Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126301

RESUMO

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.

2.
Acta Biomater ; 106: 124-135, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068138

RESUMO

Current drug development techniques are expensive and inefficient, partially due to the use of preclinical models that do not accurately recapitulate in vivo drug efficacy and cytotoxicity. To address this challenge, we report on an integrated, in vitro multi-organoid system that enables parallel assessment of drug efficiency and toxicity on multiple 3D tissue organoids. Built in a low-cost, adhesive film-based microfluidic device, these miniaturized structures require less than 200 µL fluid volume and are amenable to both matrix-based 3D cell culture and spheroid aggregate integration, each supported with an in situ photocrosslinkable hyaluronic acid hydrogel. Here, we demonstrate this technology first with a three-organoid device consisting of liver, cardiac, and lung constructs. We show that these multiple tissue types can be kept in common circulation with high viability for 21 days and validate the platform by investigating liver metabolism of the prodrug capecitabine into 5-fluorouracil (5-FU) and observing downstream toxicity in lung and cardiac organoids. Then we expand the integrated system to accommodate six humanized constructs, including liver, cardiac, lung, endothelium, brain, and testes organoids. Following a 14-day incubation in common media, we demonstrate multi-tissue interactions by metabolizing the alkylating prodrug ifosfamide in the liver organoid to produce chloroacetaldehyde and induce downstream neurotoxicity. Our results establish an expandable, multi-organoid body-on-a-chip system that can be fabricated easily and used for the accurate characterization of drug interactions in vitro. STATEMENT OF SIGNIFICANCE: The use of 3-dimensional (3D) in vitro models in drug development has advanced over the past decade. However, with several exceptions, the majority of research studies using 3D in vitro models, such as organoids, employ single tissue types, in isolated environments with no "communication" between different tissues. This is a significant limiting factor because in the human body there is significant signaling between different cells, tissues, and organs. Here we employ a low-cost, adhesive film-based microfluidic device approach, paired with a versatile extracellular matrix-derived hyaluronic acid hydrogel to support integrated systems of 3 and 6 3D organoid and cell constructs. Moreover, we demonstrate an integrated response to drugs, in which downstream toxicity is dependent on the presence of liver organoids.


Assuntos
Capecitabina/metabolismo , Ifosfamida/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Organoides/metabolismo , Pró-Fármacos/metabolismo , Capecitabina/toxicidade , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Ifosfamida/toxicidade , Organoides/efeitos dos fármacos , Pró-Fármacos/toxicidade
3.
Curr Stem Cell Res Ther ; 14(5): 442-452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854976

RESUMO

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


Assuntos
Vesículas Extracelulares , Hepatopatias/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Humanos , Cirrose Hepática/terapia , Neoplasias Hepáticas/terapia , Células-Tronco Mesenquimais
4.
PLoS One ; 13(7): e0200847, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024933

RESUMO

To investigate the role of miR-122 in the development and regression of non-alcoholic fatty liver disease (NAFLD) in vitro, we used multicellular 3D human liver organoids developed in our laboratory. These organoids consist of primary human hepatocytes, Kupffer cells, quiescent stellate cells and liver sinusoidal endothelial cells. They remain viable and functional for 4 weeks expressing typical markers of liver function such as synthesis of albumin, urea, and alpha-1 p450 drug metabolism. Before mixing, hepatic cells were transduced with lentivirus to inhibit miR122 expression (ABM, CA). Immediately after the organoids were fully formed (day 4) or after 1 or 2 weeks of additional incubation (days 11 or 18), the organoids were analyzed using fluorescent live/dead staining and ATP production; total RNA was extracted for qPCR gene expression profiling. Our results show that miR-122 inhibition in liver organoids leads to inflammation, necrosis, steatosis and fibrosis. This was associated with increase in inflammatory cytokines (IL6, TNF), chemokines (CCL2, CCL3) and increase in a subset of Matrix Metaloproteinases (MMP8, MMP9). An altered expression of key genes in lipid metabolism (i.e LPL, LDLR) and insulin signaling (i.e GLUT4, IRS1) was also identified. CONCLUSION: Our results highlight the role of miR-122 inhibition in liver inflammation, steatofibrosis and dysregulation of insulin signaling. Patients with NAFLD are known to have altered levels of miR-122, therefore we suggest that miR-122 mimics could play a useful role in reversing liver steatofibrosis and insulin resistance seen in patients with NAFLD.


Assuntos
Inflamação/metabolismo , Insulina/metabolismo , Fígado/citologia , Fígado/metabolismo , MicroRNAs/metabolismo , Necrose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Organoides/citologia , Organoides/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-6/metabolismo , Células de Kupffer/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transdução de Sinais
5.
Biofabrication ; 8(1): 014101, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756674

RESUMO

The inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment. The bioreactor design allowed for in situ monitoring of the culture environment by enabling direct access to the hepatic construct during the experiment without compromising the platform operation. The engineered bioreactor could be interfaced with a bioprinter to fabricate 3D hepatic constructs of spheroids encapsulated within photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. The engineered hepatic construct remained functional during the 30 days culture period as assessed by monitoring the secretion rates of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin, as well as immunostaining for the hepatocyte markers, cytokeratin 18, MRP2 bile canalicular protein and tight junction protein ZO-1. Treatment with 15 mM acetaminophen induced a toxic response in the hepatic construct that was similar to published studies on animal and other in vitro models, thus providing a proof-of-concept demonstration of the utility of this liver-on-a-chip platform for toxicity assessment.


Assuntos
Bioensaio/instrumentação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dispositivos Lab-On-A-Chip , Fígado Artificial , Impressão Tridimensional/instrumentação , Testes de Toxicidade/instrumentação , Doença Hepática Induzida por Substâncias e Drogas/patologia , Desenho de Equipamento , Análise de Falha de Equipamento , Células Hep G2 , Humanos , Técnicas de Cultura de Órgãos/instrumentação , Esferoides Celulares/efeitos dos fármacos
6.
Neurourol Urodyn ; 32(8): 1130-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23371862

RESUMO

AIMS: To describe the morphological and functional consequences for bladder development and function when nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) is lacking or reduced. METHODS: The Bloated Bladder (Blad) mouse, lacking Nmnat2, and heterozygotes were utilized for this investigation. Morphology and development of the bladder were studied using immunohistochemistry against urothelial, smooth muscle, and nerve markers. Functional effects were assessed by organ bath experiments and cystometry. RESULTS: Homozygote mutants were malformed and died at birth, whereas heterozygotes survived and morphologically did not differ from wild-type controls. Morphological bladder changes appeared in the Blad mutants as early as embryonic day 15.5 (E15.5) with an extremely distended bladder at E18.5. Staining revealed that all the bladder layers were present and expressed mature markers in all three genotypes. No nerves could be demonstrated by immunohistochemistry in the Blad mutant bladder at E18.5. Organ bath analysis showed that bladders from Blad mutant showed signs of denervation supersensitivity in response to carbachol, and no response to electrical stimulation of nerves at E18.5. Adult heterozygotes, which have a reduced expression of Nmnat2 at E18.5, showed decreased responses to carbachol and electrical stimulation compared to wild-type controls. The latter also retained their ability to empty their bladders, but showed increased micturition pressures compared to controls. CONCLUSIONS: Complete loss of Nmnat2 leads to a mature but distended bladder in utero and is not compatible with survival. Moderate loss of Nmnat2 has no effect on bladder development, survival, and has only modest effects on bladder function later in life.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase/genética , Bexiga Urinária/crescimento & desenvolvimento , Bexiga Urinária/metabolismo , Animais , Estimulação Elétrica , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Bexiga Urinária/inervação
7.
PLoS One ; 6(10): e26535, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046303

RESUMO

Amniotic fluid stem (AFS) cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC) show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR) and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1ß, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO) and monocyte chemotactic protein (MCP) family members as well as interleukin-6 (IL-6). AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α), MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1ß activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and absence of tumorigenicity may make AFS cells a superior source of stable, well characterized "off the shelf" immunomodulatory cells for a variety of immunotherapies.


Assuntos
Líquido Amniótico/citologia , Imunidade , Proteínas Proto-Oncogênicas c-kit , Células-Tronco/imunologia , Células Clonais/imunologia , Meios de Cultivo Condicionados , Citocinas/metabolismo , Humanos , Imunoterapia , Inflamação/prevenção & controle , Bancos de Tecidos
8.
J Urol ; 183(2): 780-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022053

RESUMO

PURPOSE: Nitric oxide mediates urethral smooth muscle relaxation and may also be involved in detrusor activity control. Mice with mutation in the Immp2l gene have high superoxide ion levels and a consequent decrease in the bioavailable amount of nitric oxide. We studied bladder function in this mouse model. MATERIAL AND METHODS: Young male mutants at ages 4 to 6 months, old female mutants at age 18 months and healthy WT age matched controls were used. The detrusor contractile response to carbachol and electrical field stimulation was tested in isolated detrusor strips in organ baths. In vivo bladder function was evaluated by cystometry in conscious animals. RESULTS: Young male mutants had significantly lower micturition and higher post-void residual volume than WT controls. They had pronounced voiding difficulty and strained when initiating micturition. Detrusor contractile responses to carbachol and electrical field stimulation were similar in mutant and WT mice. Old female mutant mice had lower bladder capacity and micturition volume, and higher micturition frequency and bladder-to-body weight ratio than WT controls. In the in vitro study detrusor strips from mutants showed a lower maximum response to carbachol. CONCLUSIONS: Mice with mutation in the Immp2l gene have bladder dysfunction, mainly characterized by emptying abnormalities in young males and increased detrusor activity in old females. Detrusor function was preserved in young males and impaired in old females. These animals are a natural model of oxidative stress with low bioavailable nitric oxide. Thus, they are interesting tools in which to evaluate the role of these conditions on bladder dysfunction.


Assuntos
Óxido Nítrico/fisiologia , Doenças da Bexiga Urinária/etiologia , Animais , Endopeptidases/genética , Feminino , Masculino , Camundongos , Camundongos Mutantes , Mutação , Doenças da Bexiga Urinária/genética
9.
Mol Biol Rep ; 37(4): 2117-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19669668

RESUMO

It has been shown that human and murine fibroblasts can be reprogrammed by ectopic expression of transcription factors using viral vectors. For the purpose of human therapeutic applications, the integration of viral transgenes into the genome is unlikely to be accepted. We therefore produced recombinant transcription factor proteins in E. coli (OCT4, SOX2, c-MYC and KLF4) carrying the cell penetrating TAT domain from HIV1. The purified proteins were able to enter into mammalian cells when added to tissue culture medium but appeared not to translocate to the nucleus. Further investigation indicated that most of the protein was tied up in the endosomes and was unavailable for reprogramming. Once this problem has been solved it seems likely that protein reprogramming will be the method of choice for clinical applications.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , HIV-1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Desnaturação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Corantes de Rosanilina , Fatores de Transcrição SOXB1/metabolismo , Coloração e Rotulagem , Fatores de Tempo , Transdução Genética
10.
PLoS One ; 4(3): e5064, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19333399

RESUMO

BACKGROUND: Ovarian cancer is the second most prevalent gynecologic cancer in women. However, it is by far the most lethal. This is generally attributed to the absence of easily detectable markers specific to ovarian cancers that can be used for early diagnosis and specific therapeutic targets. METHODOLOGY/PRINCIPAL FINDINGS: Using end point PCR we have found that a family of retrogenes, previously thought to be expressed only in the male testis during spermatogenesis in man, are also expressed in normal ovarian tissue and a large percentage of ovarian cancers. In man there are at least eleven such autosomal retrogenes, which are intronless copies of genes on the X chromosome, essential for normal spermatogenesis and expressed specifically in the human testis. We tested for the expression of five of the known retrogenes, UTP14C, PGK2, RPL10L, RPL39L and UBL4B in normal human ovary and ovarian cancers. CONCLUSIONS/SIGNIFICANCE: We propose that the activation of the testis specific retrogenes in the ovary and ovarian cancers is of biological significance in humans. Because these retrogenes are specifically expressed in the ovary and ovarian cancers in the female they may prove useful in developing new diagnostic and/or therapeutic targets for ovarian cancer.


Assuntos
Neoplasias Ovarianas/genética , Ovário/metabolismo , Espermatogênese/genética , Biomarcadores Tumorais , Cromossomos Humanos X , Feminino , Expressão Gênica , Humanos , Isoenzimas/análise , Masculino , Neoplasias Ovarianas/diagnóstico , Fosfoglicerato Quinase/análise , Ribonucleoproteínas Nucleolares Pequenas/análise , Proteína Ribossômica L10 , Proteínas Ribossômicas/análise
11.
Cancer Res ; 69(8): 3614-8, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19351821

RESUMO

Testicular germ cell tumors (TGCT) are sex limited, occurring only in males with a Y chromosome. Recently, the gr/gr deletion on the human Y chromosome was associated with increased risk of TGCTs. In addition, the presence of Y chromosome sequences is associated with TGCTs in cases of gonadal dysgenesis. TGCTs in strain 129 males recapitulate many aspects of testicular cancer in human infants and can be used to evaluate the role of the Y chromosome in TGCT risk. We used chromosome substitution strains and a sex-reversing mutant to test the role of the Y chromosome on TGCT susceptibility. Our results show that a Y-linked gene that does not differ among the tested strains is essential for tumorigenesis.


Assuntos
Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Cromossomo Y , Animais , Feminino , Endogamia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Cloning Stem Cells ; 11(2): 213-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19186982

RESUMO

There is renewed interest in using animal oocytes to reprogram human somatic cells. Here we compare the reprogramming of human somatic nuclei using oocytes obtained from animal and human sources. Comparative analysis of gene expression in morula-stage embryos was carried out using single-embryo transcriptome amplification and global gene expression analyses. Genomic DNA fingerprinting and PCR analysis confirmed that the nuclear genome of the cloned embryos originated from the donor somatic cell. Although the human-human, human-bovine, and human-rabbit clones appeared morphologically similar and continued development to the morula stage at approximately the same rate (39, 36, and 36%, respectively), the pattern of reprogramming of the donor genome was dramatically different. In contrast to the interspecies clones, gene expression profiles of the human-human embryos showed that there was extensive reprogramming of the donor nuclei through extensive upregulation, and that the expression pattern was similar in key upregulation in normal control embryos. To account for maternal gene expression, enucleated oocyte transcriptome profiles were subtracted from the corresponding morula-stage embryo profiles. t-Test comparisons (median-normalized data @ fc>4; p<0.005) between human in vitro fertilization (IVF) embryos and human-bovine or human-rabbit interspecies somatic cell transfer (iSCNT) embryos found between 2400 and 2950 genes that were differentially expressed, the majority (60-70%) of which were downregulated, whereas the same comparison between the bovine and rabbit oocyte profiles found no differences at all. In contrast to the iSCNT embryos, expression profiles of human-human clones compared to the age-matched IVF embryos showed that nearly all of the differentially expressed genes were upregulated in the clones. Importantly, the human oocytes significantly upregulated Oct-4, Sox-2, and nanog (22-fold, 6-fold, and 12-fold, respectively), whereas the bovine and rabbit oocytes either showed no difference or a downregulation of these critical pluripotency-associated genes, effectively silencing them. Without appropriate reprogramming, these data call into question the potential use of these discordant animal oocyte sources to generate patient-specific stem cells.


Assuntos
Núcleo Celular/metabolismo , Reprogramação Celular , Clonagem de Organismos , Oócitos/fisiologia , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Camundongos , Mitocôndrias/genética , Técnicas de Transferência Nuclear , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/citologia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Coelhos , Células-Tronco/fisiologia
13.
Transplantation ; 86(2): 208-14, 2008 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-18645481

RESUMO

BACKGROUND: In women, a healthy, patent vagina is important for the maintenance of a good quality of life. Apart from congenital abnormalities, such as cloacal exstrophy, intersex disorders, and an absence of the posterior two thirds of the organ, individuals may also suffer from cancer, trauma, infection, inflammation, or iatrogenic injuries leading to tissue damage and loss -- all of which require vaginal repair or replacement. Of necessity, reconstruction is often performed with nonvaginal tissue substitutes, such as segments of large intestine or skin, which are not anatomically or functionally ideal (Hendren and Atala, J Urol 1994; 152: 752; Hendren and Atala, J Pediatr Surg 1995; 30: 91). Whenever such tissue is used additional complications often ensue, such as strictures, infection, hair growth, graft shrinkage, diverticuli, and even malignancy (Filipas et al., BJU Int 2000; 85: 715; Lai and Chang, Changgeng Yi Xue Za Zhi 1999; 22: 253; Parsons et al., J Pediatr Surg 2002; 37: 629; Seccia et al., Ann Plast Surg 2002; 49: 379; Filipas, Curr Opin Urol 2001; 11: 267). METHODS: Using a rabbit model, we report here the construction of a functional vagina using autologous cells expanded from a small vaginal biopsy. RESULTS.: Six months after total vaginal replacement, radiographic analysis of rabbits implanted with the neovagina demonstrated wide, patent vaginal calibers without strictures. Histologic analysis revealed well-organized epithelial and muscle cell layers. Physiologic studies showed normal-range responses to electrical stimulation or to an adrenergic agonist. CONCLUSIONS: These data indicate that a tissue engineering approach to clinical vaginal reconstruction in women is now a realistic possibility.


Assuntos
Engenharia Tecidual/métodos , Vagina/citologia , Vagina/cirurgia , Animais , Fenômenos Biomecânicos , Biópsia , Técnicas de Cultura de Células/métodos , Colágeno/metabolismo , Elastina/metabolismo , Feminino , Imuno-Histoquímica/métodos , Polímeros/química , Coelhos , Resistência à Tração , Fatores de Tempo , Engenharia Tecidual/instrumentação , Doenças Vaginais/terapia
14.
Biol Reprod ; 78(4): 601-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18094351

RESUMO

The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients.


Assuntos
Endopeptidases/genética , Infertilidade/etiologia , Mitocôndrias/fisiologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Mutagênese Insercional , Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Animais , Endopeptidases/fisiologia , Disfunção Erétil/etiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/fisiologia , Óxido Nítrico/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Ovulação , Estresse Oxidativo , Superóxidos/metabolismo
15.
Hum Mol Genet ; 14(9): 1221-9, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15790596

RESUMO

In the dominant mouse mutant Odd Sex, XXOds/+ mice develop as phenotypic, sterile males due to male-pattern expression of Sox9 in XXOds/+ embryonic gonads. To test whether SOX9 was sufficient to generate a fully fertile male in the absence of Sry, we constructed an XY(Sry(-))Ods/+ male mouse, in which the male phenotype is controlled autosomally by the Ods mutation. Mice were initially fertile, but progressively lost fertility until 5-6 months when they were sterile with very few germ cells in the testis. XY(Sry-)Ods/+ males also failed to establish the correct male-specific pattern of vascularization at the time of sex determination, which could be correlated to an inability of XY(Sry-),Ods/+ males to fully down-regulate Wnt4 expression in the embryonic gonad. Increasing the amount of SOX9 by producing homozygous XY(Sry-)Ods/Ods males was able to completely rescue the phenotype and restore correct vascular patterning and long-term fertility. These data indicate that activation of SOX9 in the gonad is sufficient to trigger all the downstream events needed for the development of a fully fertile male and provide evidence that Sox9 may down-regulate Wnt4 expression in the gonad.


Assuntos
Genes sry , Proteínas de Grupo de Alta Mobilidade/genética , Infertilidade Masculina/genética , Testículo/embriologia , Testículo/metabolismo , Fatores de Transcrição/genética , Animais , Western Blotting , Cruzamentos Genéticos , Regulação para Baixo , Deleção de Genes , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Proteínas de Grupo de Alta Mobilidade/análise , Homozigoto , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Mutantes , Tamanho do Órgão/genética , Linhagem , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição SOX9 , Testículo/irrigação sanguínea , Testículo/citologia , Fatores de Tempo , Fatores de Transcrição/análise , Transgenes , Proteínas Wnt , Proteína Wnt4
16.
Nat Genet ; 35(2): 165-70, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12973351

RESUMO

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.


Assuntos
Anemia de Fanconi/genética , Ligases/genética , Proteínas Nucleares/genética , Deleção de Sequência , Sequência de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , Aberrações Cromossômicas , Anemia de Fanconi/enzimologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Proteína do Grupo de Complementação L da Anemia de Fanconi , Humanos , Ligases/deficiência , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo
17.
Hum Mol Genet ; 11(19): 2309-18, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12217959

RESUMO

In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 1-3% of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor affecting testis descent), was identified within the transgene integration site. Great encodes a seven-transmembrane receptor with a close similarity to the glycoprotein hormone receptors. The Great gene is highly expressed in the gubernaculum, the ligament that controls testicular movement during development, and therefore may be responsible for mediating hormonal signals that affect testicular descent. Here we show that genetic targeting of the Great gene in mice causes infertile bilateral intraabdominal cryptorchidism. The mutant gubernaculae fail to differentiate, indicating that the Great gene controls their development. Mutation screening of the human GREAT gene was performed using DHPLC analysis of the genomic DNA from 60 cryptorchid patients. Nucleotide variations in GREAT cDNA were found in both the patient and the control populations. A unique missense mutation (T222P) in the ectodomain of the GREAT receptor was identified in one of the patients. This mutant receptor fails to respond to ligand stimulation, implicating the GREAT gene in the etiology in some cases of cryptorchidism in humans.


Assuntos
Criptorquidismo/genética , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Substituição de Aminoácidos , Animais , Northern Blotting , Clonagem Molecular , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Receptores de Superfície Celular/metabolismo , Relaxina/metabolismo , Transdução de Sinais/genética , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA