RESUMO
Nasopharyngeal carcinoma (NPC) is often diagnosed at a very advanced stage due to its location and non-specific initial symptoms. Moreover, no clinically useful serological marker has been established so far for early detection of NPC. In this study, we have investigated the clinical significance of plasma Epstein-Barr virus DNA load along with interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) levels to evaluate if these three all together can be useful as a strong serological marker for early detection and prediction of treatment response in patients with NPC. Plasma EBV DNA load, IL-6 level, VEGF expressions were measured in 24 patients with NPC at presentation and various time points during and after treatment. There was a positive correlation between high plasma EBV DNA load with higher IL-6 and VEGF expression, which was closely associated with therapeutic response as well. Persistent or recurrent plasma EBV load with higher IL-6 and VEGF levels can potentially predict disease progression and may be useful to select patients for additional therapy and longer follow-up.
Assuntos
Carcinoma , DNA Viral , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Interleucina-6 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Fator A de Crescimento do Endotélio Vascular , Carga Viral , Humanos , Interleucina-6/sangue , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/diagnóstico , Herpesvirus Humano 4/genética , Feminino , Masculino , DNA Viral/sangue , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/sangue , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/diagnóstico , Adulto , Prognóstico , Carcinoma/virologia , Carcinoma/sangue , Carcinoma/diagnóstico , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/diagnóstico , Biomarcadores/sangue , Idoso , Plasma/virologiaRESUMO
Background and aim: Bone marrow stem cells (BM-SCs) and their progeny play a central role in tissue repair and regeneration. In patients with chronic liver failure, bone marrow (BM) reserve is severally compromised and they showed marked defects in the resolution of injury and infection, leading to liver failure and the onset of decompensation. Whether BM failure is the cause or consequence of liver failure during cirrhosis is not known. In this study, we aimed to determine the underlying relationship between BM failure and regeneration failure in cirrhosis. Methodology: C57Bl/6(J) mice were used to develop chronic liver injury through intra-peritoneal administration of carbon tetrachloride (CCl4) for 15 weeks (0.1-0.5 ml/kg). Animals were sacrificed to study the transition of cirrhosis and BM defects. To restore the BM-SC reserve; healthy BM cells were infused via intra-BM infusion and assessed for changes in liver injury, regeneration, and BM-SC reserve. Results: Using a CCl4-induced animal - model of cirrhosis, we showed the loss of BM-SCs reserve occurred before regeneration failure and the onset of non-acute decompensation. Intra-BM infusion of healthy BM cells induced the repopulation of native hematopoietic stem cells (HSCs) in cirrhotic BM. Restoring BM-HSCs reserve augments liver macrophage-mediated clearance of infection and inflammation dampens neutrophil-mediated inflammation, accelerates fibrosis regression, enhances hepatocyte proliferation, and delays the onset of non-acute decompensation. Conclusion: These findings suggest that loss of BM-HSCs reserve underlies the compromised innate immune function of the liver, drives regeneration failure, and the onset of non-acute decompensation. We further provide the proof-of-concept that rejuvenating BM-HSC reserve can serve as a potential therapeutic approach for preventing regeneration failure and transition to decompensated cirrhosis.
Assuntos
Tetracloreto de Carbono , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Cirrose Hepática , Regeneração Hepática , Camundongos Endogâmicos C57BL , Animais , Camundongos , Cirrose Hepática/terapia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Masculino , Fígado/patologia , Transplante de Medula Óssea , Células da Medula ÓsseaRESUMO
Background: The accumulation of poorly folded protein in the endoplasmic reticulum (ER) promotes ER stress and contributes to the pathogenesis of hepatocellular carcinoma (HCC). Current therapies have various adverse effects, therefore, laying the need for an alternative approach. Kaempferol (KP), a naturally occurring flavonoid, possesses potent anti-proliferative properties against various cancer cells. Nevertheless, its involvement in HCC remains relatively unexplored, particularly regarding its influence on apoptosis and autophagy pathways. Methods: The effect of KP on cell viability, and motility of Hep3B cells was evaluated by MTT, and scratch assay, respectively. Hoechst staining and FACS analysis were done to check the effect of KP on apoptosis and cell cycle progression. qRTPCR was used to evaluate the expression of several apoptosis and autophagy-related genes. KP was docked with several ER stress-related proteins involved in HCC to gain further insights into molecular mechanisms. The results of docking studies were validated with MD simulation and in vitro studies. Results: Treatment with KP at different time intervals showed dose- and time-dependent growth inhibition of liver cancer cells. KP decreased motility and arrested the cell cycle at the G0/G1 phase in Hep3B cells. Additionally, in the context of HCC, the relationship between KP, apoptosis, and autophagy is significant. It induced apoptosis and autophagy in Hep3B cells by downregulating the expression of Bcl-2 and upregulated Bax and Bid, Caspase-3, Beclin-1, and LC3. KP showed a better binding affinity with Nrf2, PERK, and IRE1α among all selected proteins. Further, it reversed the protective effect of 4-PBA (ER Stress inhibitor) by inducing apoptosis and autophagy in Hep3B cells. Conclusion: The study suggested KP as a potential chemopreventive agent for managing HCC by effectively inducing apoptosis and autophagy in Hep3B cells.
RESUMO
Haploidentical (haplo) hematopoietic cell transplantation (HCT) for nonmalignant disease (NMD) carries inherent challenges of both alloreactivity and graft failure. Building on promising results from pilot studies in which abatacept was combined with post-transplantation cyclophosphamide (PTCy) and sirolimus (AbaCyS) in younger NMD patients undergoing haplo-HCT, we present the long-term outcomes of this protocol. On the back of uniform disease-specific conditioning regimens containing antithymocyte globulin 4.5 mg/kg from day -9 to day -7, GVHD prophylaxis with AbaCyS consisted of abatacept administered on days 0, +5, +20, +35, and monthly until 180 days with PTCy and sirolimus. The patients were followed up with longitudinal assessment of immune reconstitution, growth, and reproductive development and quality of life (QoL) analyses. Among 40 patients (aplastic anemia, n = 24; hemoglobinopathies, n = 14; and primary immunodeficiencies, n = 2) with a median age of 10 years (range, 2 to 25 years), 95% achieved sustained engraftment. Post-transplantation hemophagocytic syndrome was detected in 3 patients, leading to graft failure in 2 cases. The incidence of acute graft-versus-host disease (GVHD) was 2.6%, and that of chronic GVHD (cGVHD) was 14.3%. Cytomegalovirus, adenovirus, and Epstein-Barr virus infections were observed in 45%, 5%, and 0% respectively. Rates of nonrelapse mortality, overall survival, event-free survival, and GVHD-free, event-free survival were 5%, 95%, 90%, and 82%, respectively, at a median follow-up of 4.6 years. Absence of cGVHD correlated with younger patient age and early sustained recovery of regulatory T cells and mature natural killer cells, which in turn was associated with improved QoL and lack of late infections. The AbaCyS protocol was associated with excellent long-term survival, with attenuation of both early and late alloreactivity in >80% of younger patients undergoing haplo-HCT for NMD. This study sheds light on predispositions to cGVHD and its impact on QoL, warranting further optimization of this approach.
Assuntos
Abatacepte , Ciclofosfamida , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Sirolimo , Transplante Haploidêntico , Humanos , Ciclofosfamida/uso terapêutico , Adulto , Feminino , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Adolescente , Sirolimo/uso terapêutico , Criança , Pré-Escolar , Abatacepte/uso terapêutico , Adulto Jovem , Seguimentos , Doença Enxerto-Hospedeiro/prevenção & controle , Imunossupressores/uso terapêutico , Qualidade de Vida , Condicionamento Pré-Transplante/métodosRESUMO
The aim of the present study is to explore the anti-cancer, anti-oxidant, and anti-obesity potential of saffron petal extract (SPE) prepared through the hydro-alcoholic extraction method. Further partitioning was done with a series of polar and non-polar solvents to find out the most potent fraction of SPE against HCC. Organoleptic characterization depicted the color, odor, taste, and texture of the sub-fractions of SPE. Phytochemical, and pharmacognostic screening of these fractions revealed the presence of alkaloids, flavonoids, carbohydrates, glycosides, and phenols. The quantitative assessment demonstrated that the n-butanol fraction showed maximum phenolic (60.8 mg GAE eq./mg EW), and flavonoid (23.3 mg kaempferol eq./mg EW) content. The anti-oxidant study revealed that the n-butanol fraction exhibited the highest radical scavenging activity, as assessed through DPPH and FRAP assay. The results of the comparative cytotoxic potential also showed n-butanol as the best against liver cancer cells (Huh-7), as it has the least IC50 value (462.8 µg/ml). While other extracts viz., chloroform, n-hexane, ethyl acetate, and aqueous fractions have IC50 values as 1088, 733.9, 1043, and 1245 µg/ml, respectively. Additionally, the n-butanol fraction exerted the highest inhibitory potential against α-amylase (92.5%) and pancreatic lipase enzymes (78%), indicating its anti-adipogenesis property. Based on the current finding, we can deduce that the n-butanol fraction of SPE has better cytotoxic, anti-oxidant, and anti-obesity potential than the other fractions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03669-x.
RESUMO
Identification of genes dysregulated during the hepatitis B virus (HBV)-host cell interaction adds to the understanding of underlying molecular mechanisms and aids in discovering effective therapies to improve prognosis in hepatitis B virus (HBV)-infected individuals. Through bioinformatics analyses of transcriptomics data, this study aimed to identify potential genes involved in the cross-talk of human hepatocytes expressing the HBV viral protein HBx with endothelial cells. Transient transfection of HBV viral gene X (HBx) was performed in THLE2 cells using pcDNA3 constructs. Through mRNA Sequencing (RNA Seq) analysis, differentially expressed genes (DEGs) were identified. THLE2 cells transfected with HBx (THLE2x) were further treated with conditioned medium from cultured human umbilical vein derived endothelial cells (HUVEC-CM). Gene Ontology (GO) enrichment analysis revealed that interferon and cytokine signaling pathways were primarily enriched for the downregulated DEGs in THLE2x cells treated with HUVEC-CM. One significant module was selected following protein-protein interaction (PPI) network generation, and thirteen hub genes were identified from the module. The prognostic values of the hub genes were evaluated using Kaplan-Meier (KM) plotter, and three genes (IRF7, IFIT1, and IFITM1) correlated with poor disease specific survival (DSS) in HCC patients with chronic hepatitis. A comparison of the DEGs identified in HUVEC-stimulated THLE2x cells with four publicly available HBV-related HCC microarray datasets revealed that PLAC8 was consistently downregulated in all four HCC datasets as well as in HUVEC-CM treated THLE2x cells. KM plots revealed that PLAC8 correlated with worse relapse free survival and progression free survival in HCC patients with hepatitis B virus infection. This study provided molecular insights which may help develop a deeper understanding of HBV-host stromal cell interaction and open avenues for future research.
Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Transcriptoma , Neoplasias Hepáticas/metabolismo , Células Endoteliais/metabolismo , Recidiva Local de Neoplasia , Hepatócitos/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas/genéticaRESUMO
BACKGROUND: Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine involved in nuclear factor kappa B (NF-κB) mediated cell survival as well as cell death. High serum TNFα levels correlate with liver fibrosis and enhance hepatic stellate cell (HSC) viability. However, the regulatory role of cellular inhibitor of apoptosis-1/2 (cIAP1/2) during TNFα induced NF-κB signaling in activated HSCs is largely unknown. METHOD AND RESULTS: Activated HSCs were treated with cIAP1/2 inhbitiors i.e., SMAC mimetic BV6, and Birinapant in the presence of TNFα and macrophage conditioned media. TNFα cytokine increased cIAP2 expression and enhanced cell viability through the canonical NF-κB signaling in activated HSCs. cIAP2 inhibition via BV6 decreased the TNFα induced canonical NF-κB signaling, and reduced cell viability in activated HSCs. SMAC mimetic, Birinapant alone did not affect the cell viability but treatment of TNFα sensitized HSCs with Birinapant induced cell death. While BV6 mediated cIAP2 ablation was able to decrease the TNFα induced canonical NF-κB signaling, this effect was not observed with Birinapant treatment. Secreted TNFα from M1 polarized macrophages sensitized activated HSCs to BV6 or Birinapant mediated cell death. However, M2 polarized macrophage conditioned medium rescued the activated HSCs from BV6 mediated cytotoxicity. CONCLUSION: In this study, we describe the regulatory role of cIAP2 in TNFα induced NF-κB signaling in activated HSCs. Targeting cIAP2 may be a promising approach for liver fibrosis treatment via modulating NF-κB signaling in activated HSCs.
Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Sobrevivência Celular , Células Estreladas do Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Linhagem Celular Tumoral , Citocinas , Apoptose , Proteínas Mitocondriais/metabolismoRESUMO
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-ß, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
RESUMO
An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them-viz., Z-guggulsterone, dehydrocostus lactone and crocin-showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.
Assuntos
Carcinoma Hepatocelular , Crocus , Neoplasias Hepáticas , Pregnenodionas , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Pregnenodionas/farmacologiaRESUMO
BACKGROUND: During the progression of hepatocellular carcinoma (HCC), several angiogenic factors are overexpressed in the hepatic microenvironment, which play a critical role in governing the phenotype of the endothelial cells. Mutation in the p53 gene (TP53) is a common event in HCC that may dysregulate the angiogenic signals. However, their functional messages remain largely unexplored at the onset of metastasis. METHODS: Role of p53 was studied by siRNA mediated silencing of p53 in HepG2 cells (WTp53), collecting and analyzing their conditioned medium, followed by indirect co-culture with endothelial cells (HUVECs). Gene and protein expression in HCC cells and endothelial cells was studied by RT-qPCR and western blotting respectively. ß-catenin protein expression and localization were analyzed by immunocytochemistry. RESULTS: We have studied a cell-to-cell interaction model to investigate the crosstalk of endothelial and hepatoma cells by either knocking down p53 or by using p53 null low metastatic HCC cell line. In the absence of p53, the HCC cells influence the migration and vascular network formation of endothelial cells through paracrine signaling of VEGF. Secretory VEGF activated the VEGF receptor-2 along with the survival signaling in endothelial cells. However, the ß-catenin signal is upregulated in endothelial cells only during interaction with metastatic set up irrespective of absence and presence of p53, indicating context-dependent participation of p53 during communication between hepatoma cells and endothelial cells. CONCLUSION: This study highlights that the role of p53 on cellular responses during interaction of hepatocellular carcinoma and endothelial cells is distinct to cell types and context.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes p53 , Humanos , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Malignancies of hepatocellular carcinoma (HCC) are rapidly spreading and commonly fatal. Like most cancers, the gene expression patterns in HCC vary significantly from patient to patient. Moreover, the expression networks during HCC progression are largely controlled by microRNAs (miRNAs) regulating multiple oncogenes and tumor supressors. Therefore, miRNA-based therapeutic strategies altering these networks may significantly influence the cellular behavior enough for them to cure HCC. However, the most substantial challenges in developing such therapies are the stability of the oligos themselves and that of their delivery systems. Here we provide a comprehensive update describing various miRNA delivery systems, including virus-based delivery and non-viral delivery. The latter may be achieved using inorganic nanoparticles, polymer based nano-carriers, lipid-based vesicles, exosomes, and liposomes. Leaky vasculature in HCC-afflicted livers helps untargeted nanocarriers to accumulate in the tumor tissue but may result in side effects during higher dose of treatment. On the other hand, the strategies for actively targeting miRNA therepeutics to cancerous cells through nano-conjugates or vesicles by decorating their surface with antibodies against or ligands for HCC-specific antigens or receptors are more efficient in preventing damage to healthy tissue and cancer recurrence.
Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Nanopartículas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Pre-eclampsia (PE) is a pregnancy-specific disorder, characterized by hypertension and proteinuria. In PE, trophoblasts mediated inadequate remodeling of uterine spiral arteries seem to interrupt uteroplacental blood flow, one of the hallmarks in the early onset of PE (EO-PE). This, in turn, results in placental ischemia-reperfusion injury during hypoxia and reoxygenation episodes, leading to the generation of reactive oxygen species (ROS) and oxidative stress (OS). But still it is debatable if OS is a cause or consequence of PE. In this present study, we have investigated the effects of OS on PE placentae and trophoblast cell functions using BeWo and HTR8/SVneo cell lines. PE placental tissues showed abnormal ultrastructure, high level of reactive oxygen species (ROS) with altered unfolded protein responses (UPR) in compare with term placental tissues. Similar to PE placentae, during OS induction, the trophoblast cells showed altered invasion and migration properties with significantly variable expression of differentiation and invasion markers, e.g., syncytin and MMPs. The effect was rescued by antioxidant, N-acetyl cysteine, thereby implying a ROS-specific effect and in the trophoblast cells, OS triggers UPR pathway through IRE1α-XBP1 axis. Taken together, these findings highlight the harmful effect of unfolded protein response, which was induced due to OS on trophoblast cells and deformed invasion and differentiation programme and can be extended further to clinical settings to identify clinically approved antioxidants during pregnancy as a therapeutic measure to reduce the onset of PE.
Assuntos
Estresse Oxidativo , Pré-Eclâmpsia/patologia , Trofoblastos/patologia , Resposta a Proteínas não Dobradas , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Endorribonucleases/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/ultraestrutura , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Adulto JovemRESUMO
Reactive oxygen species (ROS) are noxious to cells because their increased level interacts with the body's defense mechanism. These species also cause mutations and uncontrolled cell division, resulting in oxidative stress (OS). Prolonged oxidative stress is responsible for incorrect protein folding in the endoplasmic reticulum (ER), causing a stressful condition, ER stress. These cellular stresses (oxidative stress and ER stress) are well-recognized biological factors that play a prominent role in the progression of hepatocellular carcinoma (HCC). HCC is a critical global health problem and the third leading cause of cancer-related mortality. The application of anti-oxidants from herbal sources significantly reduces oxidative stress. Kaempferol (KP) is a naturally occurring, aglycone dietary flavonoid that is present in various plants (Crocus sativus, Coccinia grandis, Euphorbia pekinensis, varieties of Aloe vera, etc.) It is capable of interacting with pleiotropic proteins of the human body. Efforts are in progress to develop KP as a potential candidate to prevent HCC with no adverse effects. This review emphasizes the molecular mechanism of KP for treating HCC, targeting oxidative stress.
RESUMO
BACKGROUND: Angiogenesis, the formation of new blood vessels from pre-existing vasculature is essential in a number of physiological processes such as embryonic development, wound healing as well as pathological conditions like, tumor growth and metastasis. Hyaluronic acid (HA), a high molecular weight polysaccharide, major component of extracellular matrix is known to associate with malignant phenotypes in melanomas and various other carcinomas. Hyaluronic acid binding protein 1 (HABP1) has been previously reported to trigger enhanced cellular proliferation in human liver cancer cells upon its over-expression. In the present study, we have identified the HA mediated cellular behaviour of liver endothelial cells during angiogenesis. METHODS: Endothelial cells have been isolated from perfused liver of mice. Cell proliferation was studied using microwell plates with tetrazole dye. Cell migration was evaluated by measuring endothelial monolayer wound repair as well as through transwell migration assay. Alterations in proteins and mRNA expression were estimated by immunobloting and quantitative real time PCR using Applied Biosystems. The paraformaldehyde fixed endothelial cells were used for immuno- florescence staining and F-actin detection with conjugated antibodies. The images were captured by using Olympus florescence microscope (IX71). RESULTS: We observed that administration of HA enhanced cell proliferation, adhesion, tubular sprout formation as well as migration of liver endothelial cells (ECs). The effect of HA in the rearrangement of the actins confirmed HA -mediated cytoskeleton re-organization and cell migration. Further, we confirmed enhanced expression of angiogenic factors like VEGF-A and VEGFR1 in endothelial cells upon HA treatment. HA supplementation led to elevated expression of HABP1 in murine endothelial cells. It was interesting to note that, although protein levels of ß- catenin remained unaltered, but translocation of this protein from membrane to nucleus was observed upon HA treatment, suggesting its role not only in vessel formation but also its involvement in angiogenesis signalling. CONCLUSIONS: The elucidation of molecular mechanism (s) responsible for HA mediated regulation of endothelial cells and angiogenesis contributes not only to our understanding the mechanism of disease progression but also offer new avenues for therapeutic intervention.
Assuntos
Células Endoteliais/metabolismo , Ácido Hialurônico/metabolismo , Fígado/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Células Cultivadas , Camundongos , Proteínas Mitocondriais/biossíntese , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossínteseRESUMO
Several investigations have revealed that liver diseases exhibit gender biases, but identifying the root causes of such biases has been challenging. Evidence of gender differences in liver function is present from the early stage of embryonic development. The differences in access to care and treatment as well as diagnostic deliberation may affect gender-specific differences in liver disease progression. Apart from the pathogenesis, xenobiotic metabolism, immune responses, gene expressions, mitochondrial function, lipid composition, and enzyme activities also differ in this sexually dimorphic organ. Differences in a social environment and lifestyle of men and women may also be involved in the basic mechanisms underlying the sex-associated differences and protective or aggravating effects of sex hormones during viral infections, alcoholic and non-alcoholic chronic and/or acute mode of liver injuries, carcinogenesis, autoimmune responses, and liver transplantation outcome. We summarized here the recent findings regarding the influence of sex hormones on immune responses underlying the pathology of the liver diseases in humans and animal models.
Assuntos
Hepatopatias/etiologia , Animais , Carcinogênese , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Hepatopatias/imunologia , Hepatopatias/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Masculino , Fatores SexuaisRESUMO
Hepatocellular carcinoma (HCC) is an aggressive tumor with limited systemic and locoregional modalities of treatment. Although microRNA (miRNA) based therapies have significant potential, their targeted delivery remains a major challenge. miR-199a-3p functions as an important tumor suppressor in HCC, which regulates various cellular processes. Recently, peptide-based nanoparticles (NPs) have been developed to deliver oligonucleotides including miRNA. Here, we describe the synthesis and characterization of arginine α,ß-dehydrophenylalanine (RΔF) nanoparticles for the selective delivery of miR-199a-3p to restore dysregulated gene expression in HCC. Targeted delivery was achieved by conjugating lactobionic acid (LA) with RΔF NPs (RΔF-LA NPs), a ligand for the asialoglycoprotein receptor known to be overexpressed in HCC cell lines. RΔF-LA NPs condensed miR-199a-3p had an average size of â¼60nm and a zeta potential of â¼+2.54 mV. RΔF-LA/miR NPs were found to be stable in serum as well as against RNase attack. RΔF-LA/miR NPs showed an enhanced cellular uptake and an efficient delivery of miR-199a-3p leading to a significant increase in miR-199a-3p levels (over 500 fold). The increased miR-199a-3p levels remarkably suppressed cell proliferation and migration as well as induced cellular apoptosis and downregulation of the specific target gene (mTOR) in vitro. RΔF-LA/miR NPs showed high tumor/ low organ ratios after intravenous injection into HCC tumor bearing nude mice. RΔF-LA/miR NPs treated mice demonstrated>50% decline in tumor growth, which also corresponded well with suppression of mTOR protein expression, tumor cell proliferation and increased survival rate (P < 0.05). CONCLUSION: RΔF-LA/miR NPs showed significantly enhanced delivery of the miRNA which underscores their potential for further development as a therapeutic approach for HCC. (Hepatology 2018;67:1392-1407).
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/farmacologia , Terapia de Alvo Molecular/métodos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Invasividade Neoplásica/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Commensal Escherichia coli has been identified as a major protagonist of microbe-induced colorectal oncogenesis. Its tumour-promoting attribute is linked to the expression of DNA-damaging genotoxins. Using a constitutively invasive variant of non-pathogenic E. coli, we demonstrate that chronic presence of internalized E. coli leads to enhanced oncogenicity in colon cancer cells. Instead of genomic damage, the tumorigenic effect is mediated through an expansion of the cancer stem cell (CSC) population, likely through dedifferentiation of lineage-committed intestinal epithelial cells. Stemness-linked intestinal tumorigenicity is directly correlated to absence of microbial virulence factor expression and is specific for intestinal cells. The enriched CSC fraction remains stable in the absence of the instigating bacteria and can foster stemness traits in unexposed cells through secreted factors. Mechanistically, aberrant host invasion leads to realignment of multiple host signal transduction cascades, notably mutually re-enforcing NF-κB and ß-catenin activation, through reciprocal modulation of microbe sensing pathways Nod1/Rip2 and TLR/MyD88. The expanded tumorigenic CSC population is marked by enhanced malignancy traits, long-term self-renewal capacity and robust tumorigenic ability, both in vitro and in vivo. Our study shows that microbe-induced oncogenicity is not a strict correlate of commensal virulence and can be invoked by even non-pathogenic E. coli by engendering tumorigenic stemness in host cells.
Assuntos
Carcinogênese/metabolismo , Escherichia coli/patogenicidade , Intestinos/microbiologia , Intestinos/patologia , Células-Tronco Neoplásicas/microbiologia , Células-Tronco Neoplásicas/patologia , Animais , Células CACO-2 , Carcinogênese/patologia , Linhagem Celular Tumoral , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Nus , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismoRESUMO
The routes leading to programmed cell death are as tightly regulated as those of cellular growth and proliferation, and a finely synchronized balance between the life and death of cells ensures proper organ size and function. Inhibitors of apoptosis (IAPs) proteins were initially characterized by their ability to directly bind and inhibit apoptotic caspases. However, recent studies have clarified that IAPs are much more functionally versatile, modulating a vast range of signaling pathways that have an impact on antimicrobial responses, tumorigenesis, metastasis and cellular migration. A significant contribution of IAPs in tumorigenesis is their inherent function as E3 ubiquitin ligases to modulate cellular signaling downstream of death receptors or certain pattern recognition receptors. In this review, we focus on modulation of the innate and adaptive immune systems, macrophage plasticity and inflammatory responses by IAP family members. We also explore the rationale to target IAPs pharmacologically for the treatment of a number of inflammatory diseases and cancer.
Assuntos
Imunomodulação , Inflamação/metabolismo , Inflamação/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Animais , Apoptose/imunologia , Humanos , Imunidade , Transdução de SinaisRESUMO
Proapoptotic Bax and Bak are the key B-cell lymphoma-2 family members mediating apoptosis through the intrinsic pathway. Cells doubly deficient for Bax and Bak are profoundly resistant to apoptotic stimuli originating from multiple stimuli. Here we describe mice in which Bax and Bak have been deleted specifically in T-cells using Lck-Cre. In these T cell-specific BaxBak-deficient mice, early T-cell progenitors accumulate in the thymus, with relative depletion of more mature T cells. In addition, bone marrow progenitor cells fail to progress to the double positive stage when cultured on OP9 stromal cells expressing the Notch ligand Delta-like 1, consistent with a critical role for Bax and Bak in early T-cell development. Over time, T cell-specific BaxBak-deficient mice progress to an aggressive T-cell lymphoblastic leukemia/lymphoma. Interestingly, quantitative real-time polymerase chain reaction analysis of BaxBak-deficient T-cell lymphomas does not display amplification of the Notch signal transduction pathway, commonly activated in T-cell leukemia in both mouse and man. Bax and Bak, key regulators of the intrinsic pathway of apoptosis, are thus required to prevent T-cell malignancy, and for normal T-cell differentiation, regulating early T-cell development at the stage of early T-lineage progenitor cells.