Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703051

RESUMO

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Assuntos
Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Tolerância Imunológica , Animais , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Mieloides/imunologia
2.
Sci Rep ; 14(1): 6585, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503842

RESUMO

A comparative study between Nitrogen (N2) and Argon (Ar) plasma is carried out to investigate its effect on surface morphology, hydrophilicity, permeate flux and ageing of cellulose nitrate polymeric membranes in the present work. Langmuir probe and Optical Emission Spectroscopy are used to characterize the plasma. The SEM analysis reveals the noticeable macro-void creations and pore enlargement for both N2 and Ar plasma. The AFM analysis shows a higher surface roughness for Ar plasma treatment as compared to N2 plasma treatment. XPS analysis confirms the changes in the polymer matrix along with the incorporation of various functional groups on the membrane surface as a result of the plasma treatment. A better hydrophilic nature with prolonged plasma treatment is observed for Ar plasma as compared to N2 plasma treatment. The present results show a higher permeate flux with a high rejection rate for Ar plasma treatment in comparison to N2 plasma, which might be due to the pore size and pore area enlargement of the membrane. The hydrophobic recovery for both the plasma-treated membranes is found significant for the initial ageing period of 7 days and found almost stable in nature after 7 days. A diffusion-based theoretical model is developed to study the hydrophobic recovery of plasma-treated membranes. A strong alignment between experimental and theoretical results is observed in the present work. The Cake Filtration model, derived from the Hermia model, is identified as the most suitable model for describing the fouling mechanisms for the present work.

3.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909039

RESUMO

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Assuntos
Carcinoma , Imunoglobulina A , Humanos , Imunoglobulina A/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Citoplasma/metabolismo
4.
Blood Adv ; 7(18): 5586-5602, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37531660

RESUMO

The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Síndrome de Sézary/genética , Síndrome de Sézary/patologia , Dipeptidil Peptidase 4 , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Micose Fungoide/genética , Micose Fungoide/patologia , Linfoma Cutâneo de Células T/genética , Receptores de Antígenos de Linfócitos T
5.
Gynecol Oncol ; 173: 114-121, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121178

RESUMO

OBJECTIVE: To demonstrate that shared antibody responses in endometriosis and endometriosis-associated ovarian cancer spontaneously antagonize malignant progression and can be leveraged to develop future immunotherapies. METHODS: B cells from cyopreserved clear cell ovarian carcinoma (CCC, n = 2), endometrioid ovarian carcinoma (EC, n = 2), and endometriomas (n = 2) were isolated, activated, and EBV-immortalized. Antibodies were purified from B cell supernatants and used for screening arrays containing most of the human proteome. Targets were prioritized based on accessibility (transmembrane or secreted proteins), expression in endometriosis and cancer, and concurrent IgA and IgG responses. We focused on antibodies targeting tumor-promoting syndecan binding protein (SDCBP) to demonstrate anti-tumor activity. Immunoblots and qPCR were performed to assess SDCBP expression in ovarian cancer and endometriosis cell lines and tumor samples. Recombinant IgG4 was generated using the variable heavy and light chains of dominant B cell receptors (BCRs) reacting against the extracellular domain of SDCBP, and used in in vivo studies in human CCC- and high-grade serous ovarian carcinoma (HGSOC)-bearing immunodeficient mice. RESULTS: Nine accessible proteins detected by both IgA and IgG were identified in all samples - including SDCBP, which is expressed in ovarian carcinomas of multiple histologies. Administration of α-SDCBP IgG4 in OVCAR3 (HGSOC), TOV21G and RMG-I (CCC) tumor-bearing mice significantly decreased tumor volume compared to control irrelevant IgG4. CONCLUSIONS: Spontaneous antibody responses exert suboptimal but measurable immune pressure against malignant progression in ovarian carcinomas. Using tumor-derived antibodies for developing novel immunotherapeutics warrants further investigation.


Assuntos
Adenocarcinoma de Células Claras , Carcinoma Endometrioide , Endometriose , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/patologia , Apoptose , Formação de Anticorpos , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário , Carcinoma Endometrioide/patologia , Imunoglobulina A/metabolismo , Adenocarcinoma de Células Claras/patologia , Sinteninas/metabolismo
6.
Org Biomol Chem ; 21(8): 1657-1661, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727302

RESUMO

An iron oxide nanocatalyst supported on a potassium exchanged zeolite-Y (Fe2O3-KY) is an efficient and reusable catalyst that promotes the selective α-H functionalization of 2-naphthols with various aromatic primary alcohols. The reaction occurs at 110 °C in dichloroethane and requires 6 h for completion. The product yields were found to vary with respect to the nature of the substituents. Benzyl alcohols with electron-donating groups gave the highest yields of up to 90%.

7.
Semin Immunol ; 65: 101707, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527759

RESUMO

Immuno-oncology has traditionally focused on the cellular arm of the adaptive immune response, while attributing tumor-promoting activity to humoral responses in tumor-bearing hosts. This view stems from mouse models that do not necessarily recapitulate the antibody response process consistently observed in most human cancers. In recent years, the field has reconsidered the coordinated action of T and B cell responses in the context of anti-tumor immunity, as in any other immune response. Thus, recent studies in human cancer identify B cell responses with better outcome, typically in association with superior T cell responses. An area of particular interest is tertiary lymphoid structures, where germinal centers produce isotype switched antibodies and B cells and T lymphocytes interact with other immune cell types. The presence of these lymphoid structures is associated with better immunotherapeutic responses and remain poorly understood. Here, we discuss recent discoveries on how coordination between humoral and cellular responses is required for effective immune pressure against malignant progression, providing a perspective on the role of tertiary lymphoid structures and interventions to elicit their formation in unresectable tumors.


Assuntos
Linfócitos B , Neoplasias , Linfócitos T , Estruturas Linfoides Terciárias , Animais , Humanos , Camundongos , Imunidade Adaptativa/imunologia , Linfócitos B/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia
8.
Mol Cancer Ther ; 21(7): 1184-1194, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499393

RESUMO

Although chimeric antigen receptor (CAR)-expressing T cells have proven success in hematologic malignancies, their effectiveness in solid tumors has been largely unsuccessful thus far. We found that some olfactory receptors are expressed in a variety of solid tumors of different histologic subtypes, with a limited pattern of expression in normal tissues. Quantification of OR2H1 expression by qRT-PCR and Western blot analysis of 17 normal tissues, 82 ovarian cancers of various histologies, eight non-small cell lung cancers (NSCLCs), and 17 breast cancers demonstrated widespread OR2H1 expression in solid epithelial tumors with expression in normal human tissues limited to the testis. CAR T cells recognizing the extracellular domain of the olfactory receptor OR2H1 were generated with a targeting motif identified through the screening of a phage display library and demonstrated OR2H1-specific cytotoxic killing in vitro and in vivo, using tumor cells with spontaneous expression of variable OR2H1 levels. Importantly, recombinant OR2H1 IgG generated with the VH/VL sequences of the CAR construct specifically detected OR2H1 protein signal in 60 human lung cancers, 40 ovarian carcinomas, and 73 cholangiocarcinomas, at positivity rates comparable with mRNA expression and without OR2H1 staining in 58 normal tissues. CRISPR/Cas9-mediated ablation of OR2H1 confirmed targeting specificity of the CAR and the tumor-promoting role of OR2H1 in glucose metabolism. Therefore, T cells redirected against OR2H1-expressing tumor cells represent a promising therapy against a broad range of epithelial cancers, likely with an admissible toxicity profile.


Assuntos
Neoplasias Pulmonares , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Receptores Odorantes , Feminino , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores Odorantes/metabolismo , Linfócitos T
9.
Cancer Cell ; 40(5): 545-557.e13, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35427494

RESUMO

Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3+CD8+CD103+CD69+ TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1low) tissue-resident T cells (TRMstem cells), but not recirculating TCF1+ T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on ∼13% of CD8+ tumor-infiltrating T cells (∼3% of CD8+ clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden.


Assuntos
Memória Imunológica , Neoplasias Ovarianas , Linfócitos T CD8-Positivos , Feminino , Humanos , Linfócitos do Interstício Tumoral , Células T de Memória
10.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021053

RESUMO

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Assuntos
Centro Germinativo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Inativação Gênica , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/genética
11.
Cancer Res ; 82(5): 859-871, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949671

RESUMO

Recent studies suggest that B cells could play an important role in the tumor microenvironment. However, the role of humoral responses in endometrial cancer remains insufficiently investigated. Using a cohort of 107 patients with different histological subtypes of endometrial carcinoma, we evaluated the role of coordinated humoral and cellular adaptive immune responses in endometrial cancer. Concomitant accumulation of T, B, and plasma cells at tumor beds predicted better survival. However, only B-cell markers corresponded with prolonged survival specifically in high-grade endometrioid type and serous tumors. Immune protection was associated with class-switched IgA and, to a lesser extent, IgG. Expressions of polymeric immunoglobulin receptor (pIgR) by tumor cells and its occupancy by IgA were superior predictors of outcome and correlated with defects in methyl-directed DNA mismatch repair. Mechanistically, pIgR-dependent, antigen-independent IgA occupancy drove activation of inflammatory pathways associated with IFN and TNF signaling in tumor cells, along with apoptotic and endoplasmic reticulum stress pathways, while thwarting DNA repair mechanisms. Together, these findings suggest that coordinated humoral and cellular immune responses, characterized by IgA:pIgR interactions in tumor cells, determine the progression of human endometrial cancer as well as the potential for effective immunotherapies. SIGNIFICANCE: This study provides new insights into the crucial role of humoral immunity in human endometrial cancer, providing a rationale for designing novel immunotherapies against this prevalent malignancy. See related commentary by Osorio and Zamarin, p. 766.


Assuntos
Neoplasias do Endométrio , Receptores de Imunoglobulina Polimérica , Linfócitos B/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imunidade Humoral , Imunoglobulina A/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Microambiente Tumoral
12.
Nature ; 591(7850): 464-470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536615

RESUMO

Most ovarian cancers are infiltrated by prognostically relevant activated T cells1-3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoglobulina A/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Linfócitos T Citotóxicos/imunologia , Transcitose , Especificidade de Anticorpos , Antígenos CD/imunologia , Linhagem Celular , Progressão da Doença , Feminino , Humanos , Neoplasias Ovarianas/prevenção & controle , Receptores Fc/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Transcitose/imunologia , Microambiente Tumoral/imunologia
13.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270606

RESUMO

Cutaneous T cell lymphoma (CTCL) has a poorly understood etiology and no known cure. Using conditional knockout mice, we found that ablation of the genomic organizer special AT-rich sequence-binding protein 1 (Satb1) caused malignant transformation of mature, skin-homing, Notch-activated CD4+ and CD8+ T cells into progressively fatal lymphoma. Mechanistically, Satb1 restrained Stat5 phosphorylation and the expression of skin-homing chemokine receptors in mature T cells. Notably, methyltransferase-dependent epigenetic repression of SATB1 was universally found in human Sézary syndrome, but not in other peripheral T cell malignancies. H3K27 and H3K9 trimethylation occluded the SATB1 promoter in Sézary cells, while inhibition of SUV39H1/2 methyltransferases (unlike EZH2 inhibition) restored protective SATB1 expression and selectively abrogated the growth of primary Sézary cells more effectively than romidepsin. Therefore, inhibition of methyltransferases that silence SATB1 could address an unmet need for patients with mycosis fungoides/Sézary syndrome, a set of incurable diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Metiltransferases/antagonistas & inibidores , Proteínas de Neoplasias , Síndrome de Sézary/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Síndrome de Sézary/metabolismo , Síndrome de Sézary/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
Semin Immunol ; 49: 101419, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33183950

RESUMO

Solid cancers progress from primordial lesions through complex interactions between tumor-promoting and anti-tumor immune cell types, ultimately leading to the orchestration of humoral and T cell adaptive immune responses, albeit in an immunosuppressive environment. B cells infiltrating most established tumors have been associated with a dual role: Some studies have associated antibodies produced by tumor-associated B cells with the promotion of regulatory activities on myeloid cells, and also with direct immunosuppression through the production of IL-10, IL-35 or TGF-ß. In contrast, recent studies in multiple human malignancies identify B cell responses with delayed malignant progression and coordinated T cell protective responses. This includes the elusive role of Tertiary Lymphoid Structures identified in many human tumors, where the function of B cells remains unknown. Here, we discuss emerging data on the dual role of B cell responses in the pathophysiology of human cancer, providing a perspective on future directions and possible novel interventions to restore the coordinated action of both branches of the adaptive immune response, with the goal of maximizing immunotherapeutic effectiveness.


Assuntos
Linfócitos B/imunologia , Imunidade Humoral , Neoplasias/etiologia , Animais , Linfócitos B/metabolismo , Biomarcadores , Citocinas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunomodulação , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia
15.
Science ; 369(6506): 942-949, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820120

RESUMO

Gamma delta (γδ) T cells infiltrate most human tumors, but current immunotherapies fail to exploit their in situ major histocompatibility complex-independent tumoricidal potential. Activation of γδ T cells can be elicited by butyrophilin and butyrophilin-like molecules that are structurally similar to the immunosuppressive B7 family members, yet how they regulate and coordinate αß and γδ T cell responses remains unknown. Here, we report that the butyrophilin BTN3A1 inhibits tumor-reactive αß T cell receptor activation by preventing segregation of N-glycosylated CD45 from the immune synapse. Notably, CD277-specific antibodies elicit coordinated restoration of αß T cell effector activity and BTN2A1-dependent γδ lymphocyte cytotoxicity against BTN3A1+ cancer cells, abrogating malignant progression. Targeting BTN3A1 therefore orchestrates cooperative killing of established tumors by αß and γδ T cells and may present a treatment strategy for tumors resistant to existing immunotherapies.


Assuntos
Antígenos CD/imunologia , Butirofilinas/antagonistas & inibidores , Butirofilinas/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/genética , Butirofilinas/genética , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Immunity ; 52(4): 668-682.e7, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294407

RESUMO

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Epitelial do Ovário/imunologia , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Neoplasias Cutâneas/imunologia , eIF-2 Quinase/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Terapia de Imunossupressão , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/genética , Interferon beta/imunologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
18.
J Immunol ; 203(12): 3447-3460, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704881

RESUMO

Tumor-associated macrophages are major contributors to malignant progression and resistance to immunotherapy, but the mechanisms governing their differentiation from immature myeloid precursors remain incompletely understood. In this study, we demonstrate that exosomes secreted by human and mouse tumor-educated mesenchymal stem cells (MSCs) drive accelerated breast cancer progression by inducing differentiation of monocytic myeloid-derived suppressor cells into highly immunosuppressive M2-polarized macrophages at tumor beds. Mechanistically, MSC-derived exosomes but not exosomes from tumor cells contain TGF-ß, C1q, and semaphorins, which promote myeloid tolerogenic activity by driving PD-L1 overexpression in both immature myelomonocytic precursors and committed CD206+ macrophages and by inducing differentiation of MHC class II+ macrophages with enhanced l-Arginase activity and IL-10 secretion at tumor beds. Accordingly, administration of tumor-associated murine MSC-derived exosomes accelerates tumor growth by dampening antitumor immunity, and macrophage depletion eliminates exosome-dependent differences in malignant progression. Our results unveil a new role for MSC-derived exosomes in the differentiation of myeloid-derived suppressor cells into macrophages, which governs malignant growth.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Mieloides/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos , Humanos , Imunomodulação , Imunofenotipagem , Ativação de Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Células Mieloides/citologia
19.
Biochim Biophys Acta Mol Basis Dis ; 1865(2): 502-511, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553016

RESUMO

Lethal metastasis of primary breast tumors to lymph nodes has been found to be associated with the co-expression of chemokine CXCL13 and its receptor CXCR5. To date, however, the precise molecular events regulating the co-expression of CXCL13 and CXCR5 in the context of breast cancer progression have not been identified. Therefore, to extend our understanding of the drivers of breast cancer metastasis, we undertook a line of investigation in this study in which we demonstrate that the transcriptional regulation of CXCL13 is mediated by the reciprocal activity of RelA and Nrf2, while CXCR5 is transcriptionally silenced by CpG island methylation within its promoter. Critically, we show that intra-tumoral CXCL13 and CXCR5 mRNA expression is positively correlated with intra-tumoral RelA expression within the primary tumor of breast cancer (BCa) patients (n = 98). We demonstrate a role for Nrf2 in the negative transcriptional regulation of cxcl13. Furthermore, using a luciferase assay and deletion analysis of the cxcl13 gene promoter, we demonstrate that RelA and Nrf2 directly act upon the cxcl13 promoter to regulate transcription. Chromatin immunoprecipitation PCR, supported by in silico docking analyses, confirmed that RelA and Nrf2 both occupy multiple positions within the cxcl13 promoter. Collectively, in RelA high conditions, low Nrf2 and lack of cxcr5 promoter DNA-methylation govern CXCL13-CXCR5 co-expression within breast tumors, and thus drive disease progression and metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quimiocina CXCL13/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Receptores CXCR5/genética , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Adulto , Idoso , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Quimiocina CXCL13/metabolismo , Metilação de DNA/genética , Feminino , Humanos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR5/metabolismo , Adulto Jovem
20.
J Leukoc Biol ; 103(5): 799-805, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537705

RESUMO

Due to their cytotoxic activities, many anticancer drugs cause extensive damage to the intestinal mucosa and have antibiotic activities. Here, we show that cisplatin induces significant changes in the repertoire of intestinal commensal bacteria that exacerbate mucosal damage. Restoration of the microbiota through fecal-pellet gavage drives healing of cisplatin-induced intestinal damage. Bacterial translocation to the blood stream is correspondingly abrogated, resulting in a significant reduction in systemic inflammation, as evidenced by decreased serum IL-6 and reduced mobilization of granulocytes. Mechanistically, reversal of dysbiosis in response to fecal gavage results in the production of protective mucins and mobilization of CD11b+ myeloid cells to the intestinal mucosa, which promotes angiogenesis. Administration of Ruminococcus gnavus, a bacterial strain selectively depleted by cisplatin treatment, could only partially restore the integrity of the intestinal mucosa and reduce systemic inflammation, without measurable increases in the accumulation of mucin proteins. Together, our results indicate that reconstitution of the full repertoire of intestinal bacteria altered by cisplatin treatment accelerates healing of the intestinal epithelium and ameliorates systemic inflammation. Therefore, fecal microbiota transplant could paradoxically prevent life-threatening bacteremia in cancer patients treated with chemotherapy.


Assuntos
Cisplatino/farmacologia , Disbiose/terapia , Transplante de Microbiota Fecal , Intestinos/microbiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Disbiose/mortalidade , Disbiose/patologia , Feminino , Microbioma Gastrointestinal , Intestinos/efeitos dos fármacos , Intestinos/patologia , Neoplasias Ovarianas/microbiologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/microbiologia , Neoplasias Peritoneais/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA