Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257155

RESUMO

Trastuzumab, a targeted anti-human epidermal-growth-factor receptor-2 (HER2) monoclonal antibody, represents a mainstay in the treatment of HER2-positive (HER2+) breast cancer. Although trastuzumab treatment is highly efficacious for early-stage HER2+ breast cancer, the majority of advanced-stage HER2+ breast cancer patients who initially respond to trastuzumab acquire resistance to treatment and relapse, despite persistence of HER2 gene amplification/overexpression. Here, we sought to leverage HER2 overexpression to engage antibody-dependent cellular phagocytosis (ADCP) through a combination of trastuzumab and anti-CD47 macrophage checkpoint immunotherapy. We have previously shown that blockade of CD47, a surface protein expressed by many malignancies (including HER2+ breast cancer), is an effective anticancer therapy. CD47 functions as a "don't eat me" signal through its interaction with signal regulatory protein-α (SIRPα) on macrophages to inhibit phagocytosis. Hu5F9-G4 (magrolimab), a humanized monoclonal antibody against CD47, blocks CD47's "don't eat me" signal, thereby facilitating macrophage-mediated phagocytosis. Preclinical studies have shown that combining Hu5F9-G4 with tumor-targeting antibodies, such as rituximab, further enhances Hu5F9-G4's anticancer effects via ADCP. Clinical trials have additionally demonstrated that Hu5F9-G4, in combination with rituximab, produced objective responses in patients whose diffuse large B cell lymphomas had developed resistance to rituximab and chemotherapy. These studies led us to hypothesize that combining Hu5F9-G4 with trastuzumab would produce an anticancer effect in antibody-dependent cellular cytotoxicity (ADCC)-tolerant HER2+ breast cancer. This combination significantly suppressed the growth of ADCC-tolerant HER2+ breast cancers via Fc-dependent ADCP. Our study demonstrates that combining trastuzumab and Hu5F9-G4 represents a potential new treatment option for HER2+ breast cancer patients, even for patients whose tumors have progressed after trastuzumab.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Antígeno CD47/imunologia , Trastuzumab/administração & dosagem , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Feminino , Humanos , Imunoterapia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
2.
Cancer Lett ; 346(1): 129-38, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24368187

RESUMO

Previous studies have suggested that TGF-ß functions as a tumor promoter in metastatic, mesenchymal-like breast cancer cells and that TGF-ß inhibitors can effectively abrogate tumor progression in several of these models. Here we report a novel observation with the use of genetic and pharmacological approaches, and murine mammary cell injection models in both syngeneic and immune compromised mice. We found that TGF-ß receptor II (TßRII) knockdown in the MMTV-PyMT derived Py8119, a mesenchymal-like murine mammary tumor cell line, resulted in increased orthotopic tumor growth potential in a syngeneic background and a similar trend in an immune compromised background. Systemic treatment with a small-molecule TGF-ß receptor I kinase inhibitor induced a trend towards increased metastatic colonization of distant organs following intracardiac inoculation of Py8119 cells, with little effect on the colonization of luminal-like Py230 cells, also derived from MMTV-PyMT tumors. Taken together, our data suggest that the attenuation of TGF-ß signaling in mesenchymal-like mammary tumors does not necessarily inhibit their malignant potential, and anti-TGF-ß therapeutic intervention requires greater precision in identifying molecular markers in tumors with an indication of functional TGF-ß signaling.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Imuno-Histoquímica , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA