Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 13(2): 380-393, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378672

RESUMO

Here, we have used patient-derived induced pluripotent stem cell (iPSC) and gene-editing technology to study the cardiac-related molecular and functional consequences of mutations in GLA causing the lysosomal storage disorder Fabry disease (FD), for which heart dysfunction is a major cause of mortality. Our in vitro model recapitulated clinical data with FD cardiomyocytes accumulating GL-3 and displaying an increased excitability, with altered electrophysiology and calcium handling. Quantitative proteomics enabled the identification of >5,500 proteins in the cardiomyocyte proteome and secretome, and revealed accumulation of the lysosomal protein LIMP-2 and secretion of cathepsin F and HSPA2/HSP70-2 in FD. Genetic correction reversed these changes. Overexpression of LIMP-2 directly induced the secretion of cathepsin F and HSPA2/HSP70-2, implying causative relationship, and led to massive vacuole accumulation. In summary, our study has revealed potential new cardiac biomarkers for FD, and provides valuable mechanistic insight into the earliest pathological events in FD cardiomyocytes.


Assuntos
Doença de Fabry/patologia , Proteínas de Membrana Lisossomal/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Receptores Depuradores/metabolismo , Potenciais de Ação , Biomarcadores/metabolismo , Catepsina F/metabolismo , Edição de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/fisiologia , Mutação Puntual , Mapas de Interação de Proteínas , Proteômica , Vacúolos/metabolismo , alfa-Galactosidase/genética
2.
Allergy ; 74(3): 549-559, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29987849

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic inflammatory disease often accompanied by impairment of sense of smell. This symptom has been somewhat overlooked, and its relationship to inflammatory cytokines, tissue compression, neuronal loss, and neurogenesis is still unclear. METHODS: In order to elucidate potential mechanisms leading to CRS in humans, we have established a type 2/T helper type 2 cell (Th2)-mediated allergic CRS mouse model, based on house dust mite (HDM) and Staphylococcus aureus enterotoxin B (SEB) sensitization. The inflammatory status of the olfactory epithelium (OE) was assessed using histology, biochemistry, and transcriptomics. The sense of smell was evaluated by studying olfactory behavior and recording electro-olfactograms (EOGs). RESULTS: After 22 weeks, a typical type 2/Th2-mediated inflammatory profile was obtained, as demonstrated by increased interleukin (IL)-4, IL-5, and IL-13 in the OE. The number of mast cells and eosinophils was increased, and infiltration of these cells into the olfactory mucosa was also observed. In parallel, transcriptomic and histology analyses indicated a decreased number of immature olfactory neurons, possibly due to decreased renewal. However, the number of mature sensory neurons was not affected and neither the EOG nor olfactory behavior was impaired. CONCLUSION: Our mouse model of CRS displayed an allergic response to HDM + SEB administration, including the type 2/Th2 inflammatory profile characteristic of human eosinophilic CRSwNP. Although the sense of smell did not appear to be altered in these conditions, the data reveal the influence of chronic inflammation on olfactory neurogenesis, suggesting that factors unique to humans may be involved in CRSwNP-associated anosmia.


Assuntos
Neurogênese , Mucosa Olfatória/metabolismo , Rinite/etiologia , Rinite/metabolismo , Sinusite/etiologia , Sinusite/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Doença Crônica , Modelos Animais de Doenças , Camundongos , Neurogênese/genética , Neurogênese/imunologia , Mucosa Olfatória/fisiopatologia , Neurônios Receptores Olfatórios/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Rinite/fisiopatologia , Sinusite/fisiopatologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA