Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 1(2): 235-248, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32613204

RESUMO

Anti-cancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM, a molecular barcoding method, to screen drugs against cell lines in pools. An unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines in a manner predictable from the cell lines' molecular features. Our findings include compounds that killed by inducing PDE3A-SLFN12 complex formation; vanadium-containing compounds whose killing depended on the sulfate transporter SLC26A2; the alcohol dependence drug disulfiram, which killed cells with low expression of metallothioneins; and the anti-inflammatory drug tepoxalin, which killed via the multi-drug resistance protein ABCB1. The PRISM drug repurposing resource (https://depmap.org/repurposing) is a starting point to develop new oncology therapeutics, and more rarely, for potential direct clinical translation.


Assuntos
Neoplasias , Linhagem Celular , Dissulfiram , Reposicionamento de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
2.
Nature ; 560(7718): 325-330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089904

RESUMO

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Evolução Molecular , Variação Genética/genética , Instabilidade Genômica/genética , Transcrição Gênica/genética , Neoplasias da Mama/patologia , Proliferação de Células , Forma Celular , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Variação Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Humanos , Células MCF-7 , Reprodutibilidade dos Testes
3.
ACS Chem Biol ; 13(8): 2247-2260, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29878747

RESUMO

Autophagy, a lysosomal degradation pathway, plays a crucial role in cellular homeostasis, development, immunity, tumor suppression, metabolism, prevention of neurodegeneration, and lifespan extension. Thus, pharmacological stimulation of autophagy may be an effective approach for preventing or treating certain human diseases and/or aging. We sought to establish a method for developing new chemical compounds that specifically induce autophagy. To do this, we developed two assays to identify compounds that target a key regulatory node of autophagy induction-specifically, the binding of Bcl-2 (a negative regulator of autophagy) to Beclin 1 (an allosteric modulator of the Beclin 1/VPS34 lipid kinase complex that functions in autophagy initiation). These assays use either a split-luciferase assay to measure Beclin 1/Bcl-2 binding in cells or an AlphaLISA assay to directly measure direct Beclin 1/Bcl-2 binding in vitro. We screened two different chemical compound libraries, comprising ∼300 K compounds, to identify small molecules that disrupt Beclin 1/Bcl-2 binding and induce autophagy. Three novel compounds were identified that directly inhibit Beclin 1/Bcl-2 interaction with an IC50 in the micromolar range and increase autophagic flux. These compounds do not demonstrate significant cytotoxicity, and they exert selectivity for disruption of Bcl-2 binding to the BH3 domain of Beclin 1 compared with the BH3 domain of the pro-apoptotic Bcl-2 family members, Bax and Bim. Thus, we have identified candidate molecules that serve as lead templates for developing potent and selective Beclin 1/Bcl-2 inhibitors that may be clinically useful as autophagy-inducing agents.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos
4.
Nat Chem Biol ; 12(2): 109-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656090

RESUMO

Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Aflatoxinas/química , Aflatoxinas/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Simulação por Computador , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Estrutura Molecular , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real
5.
Cancer Discov ; 5(11): 1210-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26482930

RESUMO

UNLABELLED: Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE: We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.


Assuntos
Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Bibliotecas de Moléculas Pequenas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Mutação , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia
6.
Proc Natl Acad Sci U S A ; 111(30): 10911-6, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024206

RESUMO

High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library. Here, we confirm earlier results showing that this inference is not always valid and suggest instead using biological measurement diversity derived from multiplexed profiling in the construction of libraries with diverse assay performance patterns for cell-based screens. Rather than using results from tens or hundreds of completed assays, which is resource intensive and not easily extensible, we use high-dimensional image-based cell morphology and gene expression profiles. We piloted this approach using over 30,000 compounds. We show that small-molecule profiling can be used to select compound sets with high rates of activity and diverse biological performance.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
7.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161946

RESUMO

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Leucemia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/fisiologia
8.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993102

RESUMO

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/genética
9.
Bioorg Med Chem Lett ; 22(4): 1822-6, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22297109

RESUMO

Synthetic lethal screening is a chemical biology approach to identify small molecules that selectively kill oncogene-expressing cell lines with the goal of identifying pathways that provide specific targets against cancer cells. We performed a high-throughput screen of 303,282 compounds from the National Institutes of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) against immortalized BJ fibroblasts expressing HRAS(G12V) followed by a counterscreen of lethal compounds in a series of isogenic cells lacking the HRAS(G12V) oncogene. This effort led to the identification of two novel molecular probes (PubChem CID 3689413, ML162 and CID 49766530, ML210) with nanomolar potencies and 4-23-fold selectivities, which can potentially be used for identifying oncogene-specific pathways and targets in cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ratos , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA