Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 218(12): 3943-3953, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31615875

RESUMO

The ATR kinase is a master regulator of the cellular response to DNA replication stress. Activation of ATR relies on dual pathways involving the TopBP1 and ETAA1 proteins, both of which harbor ATR-activating domains (AADs). However, the exact contribution of the recently discovered ETAA1 pathway to ATR signaling in different contexts remains poorly understood. Here, using an unbiased CRISPR-Cas9-based genome-scale screen, we show that the ATR-stimulating function of ETAA1 becomes indispensable for cell fitness and chromosome stability when the fidelity of DNA replication is compromised. We demonstrate that the ATR-activating potential of ETAA1 is controlled by cell cycle- and replication stress-dependent phosphorylation of highly conserved residues within its AAD, and that the stimulatory impact of these modifications is required for the ability of ETAA1 to prevent mitotic chromosome abnormalities following replicative stress. Our findings suggest an important role of ETAA1 in protecting against genome instability arising from incompletely duplicated DNA via regulatory control of its ATR-stimulating potential.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Sistemas CRISPR-Cas , Ciclo Celular , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA , Genoma Humano , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais
2.
Cell Rep ; 24(12): 3274-3284, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232008

RESUMO

PICH is a DNA translocase necessary for the resolution of ultrafine anaphase DNA bridges and to ensure the fidelity of chromosomal segregation. Here, we report the generation of an animal model deficient for PICH that allowed us to investigate its physiological relevance. Pich KO mice lose viability during embryonic development due to a global accumulation of DNA damage. However, despite the presence of chromosomal instability, extensive p53 activation, and increased apoptosis throughout the embryo, Pich KO embryos survive until day 12.5 of embryonic development. The absence of p53 failed to improve the viability of the Pich KO embryos, suggesting that the observed developmental defects are not solely due to p53-induced apoptosis. Moreover, Pich-deficient mouse embryonic fibroblasts exhibit chromosomal instability and are resistant to RASV12/E1A-induced transformation. Overall, our data indicate that PICH is essential to preserve chromosomal integrity in rapidly proliferating cells and is therefore critical during embryonic development and tumorigenesis.


Assuntos
Instabilidade Cromossômica , Desenvolvimento Embrionário/genética , Animais , Apoptose , Células Cultivadas , Dano ao DNA , DNA Helicases/metabolismo , Camundongos , Proteína Supressora de Tumor p53/metabolismo
3.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

4.
Curr Opin Cell Biol ; 52: 112-119, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525475

RESUMO

The anaphase of mitosis is one of the most critical stages of the cell division cycle in that it can reveal precious information on the fate of a cell lineage. Indeed, most types of nuclear DNA segregation defects visualized during anaphase are manifestations of genomic instability and augur dramatic outcomes, such as cell death or chromosomal aberrations characteristic of cancer cells. Although chromatin bridges and lagging chromatin are always pathological (generating aneuploidy or complex genomic rearrangements), the main subject of this article, the ultrafine anaphase bridges, might, in addition to potentially driving genomic instability, play critical roles for the maintenance of chromosome structure in rapidly proliferating cells.


Assuntos
Anáfase/genética , Instabilidade Genômica/genética , Humanos
5.
Methods Mol Biol ; 1672: 495-508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043644

RESUMO

Ultrafine anaphase bridges (UFBs) are thin DNA threads linking the separating sister chromatids in the anaphase of mitosis. UFBs are thought to form when topological DNA entanglements between two chromatids are not resolved prior to anaphase onset. In contrast to other markers of defective chromosome segregation, UFBs cannot be detected by direct staining of the DNA, but instead can be detected using immunofluorescence-based approaches. Due to the fact that they are short-lived and fragile in nature, UFBs can be challenging to detect. In this chapter, we describe methods that have been optimized for successful detection of UFBs. We also provide guidelines for the optimization of UFBs detection depending on the antibody and the cell line to be used.


Assuntos
Anáfase/genética , Cromátides/genética , DNA , Linhagem Celular Tumoral , Centrômero/genética , Sítios Frágeis do Cromossomo , Segregação de Cromossomos , Imunofluorescência , Instabilidade Genômica , Humanos , Microscopia de Fluorescência , Telômero/genética
6.
Nat Commun ; 7: 10660, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876348

RESUMO

Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity.


Assuntos
Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Fase G1 , Células-Tronco Embrionárias Murinas/metabolismo , Rad51 Recombinase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Blastocisto/metabolismo , Western Blotting , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo , Histonas/metabolismo , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Mitose , Mórula/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína de Replicação A/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
7.
Nat Commun ; 6: 8962, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643143

RESUMO

PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH(-/-) cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localizes with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH(-/-) cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas Aviárias/genética , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Segregação de Cromossomos/genética , DNA Helicases/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/genética , Animais , Proteínas Aviárias/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Galinhas , Instabilidade Cromossômica/genética , DNA Helicases/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Inativação de Genes , Humanos , Linfócitos/metabolismo
8.
Nucleic Acids Res ; 43(10): 5221-35, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25901030

RESUMO

Bloom's syndrome helicase (BLM) is a member of the RecQ family of DNA helicases, which play key roles in the maintenance of genome integrity in all organism groups. We describe crystal structures of the BLM helicase domain in complex with DNA and with an antibody fragment, as well as SAXS and domain association studies in solution. We show an unexpected nucleotide-dependent interaction of the core helicase domain with the conserved, poorly characterized HRDC domain. The BLM-DNA complex shows an unusual base-flipping mechanism with unique positioning of the DNA duplex relative to the helicase core domains. Comparison with other crystal structures of RecQ helicases permits the definition of structural transitions underlying ATP-driven helicase action, and the identification of a nucleotide-regulated tunnel that may play a role in interactions with complex DNA substrates.


Assuntos
RecQ Helicases/química , Difosfato de Adenosina/química , Cristalografia por Raios X , DNA/química , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , RecQ Helicases/genética , RecQ Helicases/metabolismo , Anticorpos de Domínio Único/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA