Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 15(1): 130, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816658

RESUMO

Artificial intelligence (AI) is revolutionizing the field of medical imaging, holding the potential to shift medicine from a reactive "sick-care" approach to a proactive focus on healthcare and prevention. The successful development of AI in this domain relies on access to large, comprehensive, and standardized real-world datasets that accurately represent diverse populations and diseases. However, images and data are sensitive, and as such, before using them in any way the data needs to be modified to protect the privacy of the patients. This paper explores the approaches in the domain of five EU projects working on the creation of ethically compliant and GDPR-regulated European medical imaging platforms, focused on cancer-related data. It presents the individual approaches to the de-identification of imaging data, and describes the problems and the solutions adopted in each case. Further, lessons learned are provided, enabling future projects to optimally handle the problem of data de-identification. CRITICAL RELEVANCE STATEMENT: This paper presents key approaches from five flagship EU projects for the de-identification of imaging and clinical data offering valuable insights and guidelines in the domain. KEY POINTS: ΑΙ models for health imaging require access to large amounts of data. Access to large imaging datasets requires an appropriate de-identification process. This paper provides de-identification guidelines from the AI for health imaging (AI4HI) projects.

2.
Eur Radiol Exp ; 7(1): 20, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150779

RESUMO

Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of 'sick-care' to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single-institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area.Key points• Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata.• Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data.• Developing a common data model for storing all relevant information is a challenge.• Trust of data providers in data sharing initiatives is essential.• An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Diagnóstico por Imagem , Previsões , Big Data
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1342-1345, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946141

RESUMO

There are numerous theories concerning carcinogenesis. Starting from the Warburg effect, which was one of the first theories concerning the mitochondrial dysfunction in tumor cells. Further on, the "two-hit" theory, where tumors were considered to be the outcome of genetic aberrations or mutations and more specifically of a certain number of "hits" each one resulting in a mutation. One of the main physical problems of biological systems is proliferation. Proliferation brings forwards two main questions: First, under a given population of cells, at time t what will be the precise population at time t+24h (or any other time point)? Second, what are the metabolic strategies followed by tumor cells in order to facilitate for their growth? In the present work we have used experimental data obtained from proliferation experiments of leukemic cells, where cell population and glucose consumption were evaluated. These data were further used to examine whether cells progress through competitive behavior or synergistically. Our results have shown that cells probably progress through a cooperative strategy.


Assuntos
Teoria dos Jogos , Prisioneiros , Evolução Biológica , Proliferação de Células , Comportamento Cooperativo , Humanos , Neoplasias , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA