Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Neurol Sci ; 460: 123020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642488

RESUMO

INTRODUCTION: Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS: Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS: Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS: This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.


Assuntos
Calcinose , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Masculino , Feminino , Calcinose/genética , Calcinose/diagnóstico por imagem , Suécia/epidemiologia , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Encefalopatias/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/líquido cefalorraquidiano , Tomografia Computadorizada por Raios X , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Sci Adv ; 10(4): eadj1354, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266095

RESUMO

The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Transtornos da Memória , Masculino , Feminino , Humanos , Animais , Camundongos , Idoso , Colesterol 24-Hidroxilase , Transtornos da Memória/etiologia , Colesterol , Cognição , Doença de Alzheimer/genética , Estrogênios
3.
Mol Neurobiol ; 58(12): 6063-6076, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34449045

RESUMO

Alterations in cholesterol metabolism in the brain have a major role in the physiology of Alzheimer's disease (AD). Oxysterols are cholesterol metabolites with multiple implications in memory functions and in neurodegeneration. Previous studies have shown detrimental effects of cholesterol metabolites in neurons, but its effect in glial cells is unknown. We used a high-fat/high-cholesterol diet in mice to study the effects of hypercholesterolemia over the alarmin S100A8 cascade in the hippocampus. Using CYP27Tg, a transgenic mouse model, we show that the hypercholesterolemia influence on the brain is mediated by the excess of 27-hydroxycholesterol (27-OH), a cholesterol metabolite. We also employed an acute model of 27-OH intraventricular injection in the brain to study RAGE and S100A8 response. We used primary cultures of neurons and astrocytes to study the effect of high levels of 27-OH over the S100A8 alarmin cascade. We report that a high-fat/high-cholesterol diet leads to an increase in S100A8 production in the brain. In CYP27Tg, we report an increase of S100A8 and its receptor RAGE in the hippocampus under elevated 27-OH in the brain. Using siRNA, we found that 27-OH upregulation of RAGE in astrocytes and neurons is mediated by the nuclear receptor RXRγ. Silencing RXRγ in neurons prevented 27-OH-mediated upregulation of RAGE. These results show that S100A8 alarmin and RAGE respond to high levels of 27-OH in the brain in both neurons and astrocytes through RXRγ. Our study supports the notion that 27-OH mediates detrimental effects of hypercholesterolemia to the brain via alarmin signaling.


Assuntos
Alarminas/metabolismo , Encéfalo/metabolismo , Calgranulina A/metabolismo , Hidroxicolesteróis/metabolismo , Hipercolesterolemia/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
4.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246156

RESUMO

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/genética , Colesterol/metabolismo , Cromatografia Líquida , Desidrocolesteróis/química , Humanos , Lipogênese/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia
7.
J Steroid Biochem Mol Biol ; 195: 105475, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31541728

RESUMO

While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These "proof of principle" data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1.


Assuntos
Colestenos/sangue , Colesterol 24-Hidroxilase/genética , Oxisteróis/sangue , Animais , Deutério , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
J Steroid Biochem Mol Biol ; 190: 115-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940596

RESUMO

Serum concentrations of lathosterol, the plant sterols campesterol and sitosterol and the cholesterol metabolite 5α-cholestanol are widely used as surrogate markers of cholesterol synthesis and absorption, respectively. Increasing numbers of laboratories utilize a broad spectrum of well-established and recently developed methods for the determination of cholesterol and non-cholesterol sterols (NCS). In order to evaluate the quality of these measurements and to identify possible sources of analytical errors our group initiated the first international survey for cholesterol and NCS. The cholesterol and NCS survey was structured as a two-part survey which took place in the years 2013 and 2014. The first survey part was designed as descriptive, providing information about the variation of reported results from different laboratories. A set of two lyophilized pooled sera (A and B) was sent to twenty laboratories specialized in chromatographic lipid analysis. The different sterols were quantified either by gas chromatography-flame ionization detection, gas chromatography- or liquid chromatography-mass selective detection. The participants were requested to determine cholesterol and NCS concentrations in the provided samples as part of their normal laboratory routine. The second part was designed as interventional survey. Twenty-two laboratories agreed to participate and received again two different lyophilized pooled sera (C and D). In contrast to the first international survey, each participant received standard stock solutions with defined concentrations of cholesterol and NCS. The participants were requested to use diluted calibration solutions from the provided standard stock solutions for quantification of cholesterol and NCS. In both surveys, each laboratory used its own internal standard (5α-cholestane, epicoprostanol or deuterium labelled sterols). Main outcome of the survey was, that unacceptably high interlaboratory variations for cholesterol and NCS concentrations are reported, even when the individual laboratories used the same calibration material. We discuss different sources of errors and recommend all laboratories analysing cholesterol and NCS to participate in regular quality control programs.


Assuntos
Colesterol/sangue , Fitosteróis/sangue , Colestanol/sangue , Colesterol/análogos & derivados , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Humanos , Sitosteroides/sangue , Inquéritos e Questionários
10.
Biochimie ; 153: 26-32, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30063945

RESUMO

Increasing numbers of laboratories develop new methods based on gas-liquid and high-performance liquid chromatography to determine serum concentrations of oxygenated cholesterol metabolites such as 7α-, 24(S)-, and 27-hydroxycholesterol. We initiated a first international descriptive oxycholesterol (OCS) survey in 2013 and a second interventional survey 2014 in order to compare levels of OCS reported by different laboratories and to define possible sources of analytical errors. In 2013 a set of two lyophilized serum pools (A and B) was sent to nine laboratories in different countries for OCS measurement utilizing their own standard stock solutions. In 2014 eleven laboratories were requested to determine OCS concentrations in lyophilized pooled sera (C and D) utilizing the same provided standard stock solutions of OCS. The participating laboratories submitted results obtained after capillary gas-liquid chromatography-mass selective detection with either epicoprostanol or deuterium labelled sterols as internal standards and high-performance liquid chromatography with mass selective detection and deuterated OCS as internal standard. Each participant received a clear overview of the results in form of Youden-Plots and basic statistical evaluation in its used unit. The coefficients of variation of the concentrations obtained by all laboratories using their individual methods were 58.5-73.3% (survey 1), 56.8-60.3% (survey 2); 36.2-35.8% (survey 1), 56.6-59.8, (survey 2); 61.1-197.7% (survey 1), 47.2-74.2% (survey 2) for 24(S)-, 27-, and 7α-hydroxycholesterol, respectively. We are surprised by the very great differences between the laboratories, even under conditions when the same standards were used. The values of OCS's must be evaluated in relation to the analytical technique used, the efficiency of the ample separation and the nature of the internal standard used. Quantification of the calibration solution and inappropriate internal standards could be identified as major causes for the high variance in the reported results from the different laboratories. A harmonisation of analytical standard methods is highly needed.


Assuntos
Colesterol/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Colesterol/normas , Humanos , Padrões de Referência , Inquéritos e Questionários
11.
J Clin Exp Hepatol ; 8(2): 162-168, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29892179

RESUMO

BACKGROUND: Bile acid homeostasis is essential and imbalance may lead to liver damage and liver failure. The bile acid induced intestinal factor fibroblast growth factor 19 (FGF19) has been identified as a key protein for mediating negative feedback inhibition of bile acid synthesis. The aim of the study was to define FGF19 and bile acid concentrations in portal and systemic blood in the fasted and postprandial state. We also addressed the question if physiological portal levels of FGF19 can be extrapolated from the concentration in systemic blood. METHODS: Portal and systemic blood was collected from 75 fasted patients undergoing liver surgery and from three organ donors before and after enteral nutrition. Serum concentration of FGF19 was determined with ELISA and bile acid concentration with gas chromatography-mass spectrometry. RESULTS: Concentration of bile acids was twice as high in portal compared to systemic blood in the fasted group and 3-5 times higher in the postprandial group. FGF19 increased after enteral nutrition but did not differ between portal and systemic blood, in either group. In addition, a strong, positive correlation between bile acids and FGF19 was found. CONCLUSION: Our results confirm that bile acids drive the postprandial increase of circulating FGF19 but a hepatic clearance of FGF19 is unlikely. We conclude that systemic concentrations of FGF19 reflect portal concentrations of FGF19.

12.
J Neurol Sci ; 383: 18-25, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246610

RESUMO

BACKGROUND: Molecular diagnosis of hereditary spastic paraplegias (HSP) is a difficult task due to great clinical and genetic heterogeneity. We aimed to characterize clinical and molecular findings of HSP families from Rio Grande do Sul, Brazil; and to evaluate the diagnostic yield of a next-generation sequencing (NGS) panel with twelve HSP-related genes. METHODS: A consecutive series of HSP index cases with familial recurrence of spasticity, consanguinity or thin corpus callosum (TCC) were included in this cross-sectional study. RESULTS: Among the 29 index cases, 51.7% (15/29) received at least a likely molecular diagnosis, and 48.3% (14/29) a defined diagnosis. NGS panel diagnostic yield was 60% for autosomal dominant HSP (6/10, all SPG4), 47.4% for autosomal recessive HSP (9/19: 5 SPG11, 2 SPG7, 1 SPG5 and 1 cerebrotendinous xanthomatosis), and 50% for patients with TCC (3/6, all SPG11). Remarkably, 2/6 SPG11 patients presented keratoconus, and tendon xanthomas were absent in the patient with cerebrotendinous xanthomatosis. CONCLUSION: A likely molecular diagnosis was obtained for more than half of families with the NGS panel, indicating that this approach could be employed as a first-line investigation for HSP. SPG4 is the most frequent form of autosomal dominant and SPG11 of autosomal recessive HSP in Southern Brazil.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Paraplegia Espástica Hereditária/genética , Adulto , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/fisiopatologia , Consanguinidade , Estudos Transversais , Diagnóstico Diferencial , Família , Feminino , Humanos , Masculino , Mutação , Paraplegia Espástica Hereditária/fisiopatologia
14.
J Exp Med ; 214(3): 699-717, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213512

RESUMO

Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)-mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders.


Assuntos
Cistinil Aminopeptidase/fisiologia , Transportador de Glucose Tipo 4/fisiologia , Glucose/metabolismo , Hidroxicolesteróis/farmacologia , Neurônios/metabolismo , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Colestanotriol 26-Mono-Oxigenase/fisiologia , Colesterol/metabolismo , Humanos , Receptores X do Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
15.
J Biol Chem ; 292(12): 4913-4924, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28190002

RESUMO

Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1-/- mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1-/-, Cyp46a1-/-, Cyp27a1-/-Cyp46a1-/-, and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically.


Assuntos
Encéfalo/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Animais , Cerebelo/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestenonas/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Sci Rep ; 6: 30928, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491694

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.


Assuntos
Alquil e Aril Transferases/metabolismo , Colesterol/metabolismo , Sinapses Elétricas , Neurônios/metabolismo , Receptor trkA/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Colesterol 24-Hidroxilase/genética , Feminino , Camundongos , Camundongos Transgênicos , Crescimento Neuronal , Ratos , Ratos Wistar
17.
Sci Transl Med ; 8(333): 333ra50, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053774

RESUMO

Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Macrófagos/metabolismo , beta-Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Aterosclerose/genética , Transporte Biológico/efeitos dos fármacos , Colesterol/metabolismo , Cristalização , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores X do Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , beta-Ciclodextrinas/farmacologia
18.
J Inherit Metab Dis ; 39(1): 75-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26153518

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a treatable bile acid disorder caused by mutations of CYP27A1. The pathogenesis of neurological damage has not been completely explained. Oral chenodeoxycholic acid (CDCA) can lead to clinical stabilization, but in a subgroup of patients the disease progresses despite treatment. In the present study, we aimed at clarifying cholesterol metabolism abnormalities and their response to CDCA treatment, in order to identify reliable diagnostic and prognostic markers and understand if differences exist between stable patients and those with neurological progression. METHODS: We enrolled 19 untreated CTX patients and assessed serum profile of bile acids intermediates, oxysterols, cholesterol, lathosterol, and plant sterols. Then we performed a long-term follow up during CDCA therapy, and compared biochemical data with neurological outcome. RESULTS: We observed increase of cholestanol, 7α-hydroxy-4-cholesten-3-one (7αC4), lathosterol, and plant sterols, whereas 27-hydroxycholesterol (27-OHC) was extremely low or absent. CDCA treatment at a daily dose of 750 mg normalized all biochemical parameters except for 7αC4 which persisted slightly higher than normal in most patients, and 27-OHC which was not modified by therapy. Biochemical evaluation did not reveal significant differences between stable and worsening patients. DISCUSSION: Cholestanol and 7αC4 represent important markers for CTX diagnosis and monitoring of therapy. Treatment with CDCA should aim at normalizing serum 7αC4 as well as cholestanol, since 7αC4 better mirrors 7α-hydroxylation rate and is thought to be correlated with cholestanol accumulation in the brain. Assessment of serum 27-OHC is a very good tool for biochemical diagnosis at any stage of disease. Lathosterol and plant sterols should be considered as additional markers for diagnosis and monitoring of therapy. Further studies including long-term assessment of bile acid intermediates in cerebrospinal fluid are needed in patients who show clinical progression despite treatment.


Assuntos
Colesterol/sangue , Colesterol/metabolismo , Xantomatose Cerebrotendinosa/metabolismo , Adolescente , Adulto , Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Ácido Quenodesoxicólico/uso terapêutico , Colestanol/metabolismo , Colestenonas/metabolismo , Progressão da Doença , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/patologia , Adulto Jovem
19.
Steroids ; 99(Pt B): 183-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25683892

RESUMO

The intact blood-brain barrier in mammalians prevents exchange of cholesterol loaden particles between periphery and brain and thus nearly all cholesterol in this organ originates from de novo synthesis. Dietary cholesterol homologues from plants, campesterol and sitosterol, are known to get enriched to some extent in the mammalian brain. We recently showed that Pdgfb(ret)(/)(ret) mice, with a pericyte deficiency and a leaking blood-brain barrier phenotype, have significantly higher levels of plant sterols in the brain compared to their heterozygous Pdgfb(ret)(/)(+) controls keeping the integrity of the blood-brain barrier (BBB). In order to further study the protective functionality of the BBB we synthesized a mixture of [(2)H6]campesterol/sitosterol and fed it for 10-40days to genetically different types of animals. There was a significant enrichment of both deuterium stable isotope labeled plant sterols in the brain of both strains of mice, however, with a lower enrichment in the controls. As expected, the percentage and absolute enrichment was higher for [(2)H6]campesterol than for the more lipophilic [(2)H6]sitosterol. The results confirm that a leaking BBB causes increased flux of plant sterols into the brain. The significant flux of the labeled plant sterols into the brain of the control mice illustrates that the presence of an alkyl group in the 24-position of the steroid side chain markedly increases the ability of cholesterol to pass an intact BBB. We discuss the possibility that there is a specific transport mechanism involved in the flux of alkylated cholesterol species across the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Colesterol/análogos & derivados , Fitosteróis/metabolismo , Sitosteroides/metabolismo , Animais , Transporte Biológico , Colesterol/química , Colesterol/metabolismo , Deutério , Espectrometria de Massas , Camundongos Transgênicos , Fitosteróis/química , Proteínas Proto-Oncogênicas c-sis/metabolismo , Sitosteroides/química
20.
Mol Neurobiol ; 51(3): 1489-503, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25084760

RESUMO

The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Receptores Nucleares Órfãos/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Células Cultivadas , Colesterol/metabolismo , Colesterol 24-Hidroxilase , GTP Fosfo-Hidrolases/metabolismo , Humanos , Receptores X do Fígado , Camundongos Transgênicos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA