Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 14(1): 4000, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369625

RESUMO

Autophagy is activated in response to a variety of stress conditions including anti-cancer therapies, and tumors cells often depend on autophagy for survival. In this study, we have evaluated inhibition of autophagy as therapeutic strategy in acute lymphoblastic leukemia (ALL) in children, both as a single treatment and in combination with glucocorticoid (GC) Dexamethasone (Dexa). Analysis of proteomics and RNA-seq of ALL cell lines and primary samples identified an upregulation of Vps34 and ATG14 proteins and autophagy and lysosomal pathway enrichment in a genetic subgroup with a recurrent t(12;21) translocation. Cells from this sugbroup were also significantly more sensitive to the selective autophagy or lysosomal inhibitors than cells with other genetic rearrangements. Further, combination of Dexa with either lysosomal or autophagy inhibitors was either synergistic or additive in killing leukemic cells across various genetic and lineage backgrounds, for both cell lines and primary samples, as assessed using viability assays and SynergyFinder as well as apoptotic caspase 3/7-based live-cell assays. Our data demonstrate that targeting autophagy represents a promising strategy for the treatment of pediatric ALL, both as a selective modality for the t(12;21) pre-B-ALL subgroup, and in combination treatments to sensitize to GC-induced cytotoxicity.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Autofagia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Linhagem Celular , Glucocorticoides/uso terapêutico , Linhagem Celular Tumoral , Apoptose
2.
Cancer Res ; 84(2): 211-225, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921711

RESUMO

Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.


Assuntos
Síndromes Mielodisplásicas , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Splicing de RNA/genética , Mutação , Fatores de Transcrição/metabolismo , RNA/metabolismo
3.
Clin Cancer Res ; 29(20): 4256-4267, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37498312

RESUMO

PURPOSE: Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN: We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS: SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS: These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.


Assuntos
Genômica , Neoplasias , Humanos , Fatores de Processamento de RNA/genética , Estudos Prospectivos , Medição de Risco , Perfilação da Expressão Gênica , Mutação , Fosfoproteínas/genética , Prognóstico
4.
FASEB J ; 35(5): e21476, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788972

RESUMO

Polo-like kinase 1 (Plk1) is an important regulator of the cell cycle and it is frequently overexpressed in cancer cells. Several small molecule inhibitors have been developed to target Plk1 and some of them have reached clinical trials in adults with acute myeloid leukemia (AML). Pediatric AML patients have a poor prognosis and survivors suffer from long-term side effects. As adult AML cells have an elevated expression of Plk1, AML is a disease candidate for Plk1 inhibition. However, the relative success of clinical trials have been hampered by adverse reactions. Herein, PLK1-targeting RNA interference (RNAi) prodrugs that enter cells without a transfection reagent are used to target PLK1 selectively in primary cells from pediatric AML patients. We show that PLK1 and PLK4 mRNA expression are significantly higher in pediatric AML patients when compared to healthy donors and that PLK1 is downregulated by on average 50% using RNAi prodrugs without a significant effect on other PLK family members. In addition, the RNAi prodrug-induced decrease in PLK1 can be used to potentiate the effect of cytarabine. In summary, PLK1-targeting RNAi prodrugs can decrease the elevated levels of PLK1 in primary cells from pediatric AML patients and sensitize pediatric AML cells to chemotherapeutics.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Pró-Fármacos/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Interferência de RNA , RNA Mensageiro/antagonistas & inibidores , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Criança , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinase 1 Polo-Like
5.
Sci Rep ; 10(1): 2688, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060361

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) accounts for nearly one fifth of all childhood cancers and current challenges in B-ALL treatment include resistance, relapse and late-onset side effects due to the chemotherapy. To overcome these hurdles, novel therapies need to be investigated. One promising target is Polo-like kinase 1 (Plk1), a key regulator of the cell cycle. In this study, the Plk family expression is investigated in primary peripheral blood and bone marrow mononuclear cells from ten pediatric B-ALL patients. For the first time, short interfering RiboNucleic Neutrals (siRNNs) that enter cells without a transfection reagent are used to target Plk1 mRNA in primary cells from pediatric B-ALL patients. Our results show that the expression of Plk1 and Plk4 is significantly higher in pediatric B-ALL patients compared to healthy donors. Moreover, treatment of primary peripheral blood and bone marrow mononuclear cells from pediatric B-ALL patients, cultured ex vivo, with Plk1-targeting siRNNs results in cleavage of Plk1 mRNA. Importantly, the Plk1 knockdown is specific and does not affect other Plk members in contrast to many small molecule Plk1 inhibitors. Thus, Plk1 is a potential therapeutic target in pediatric B-ALL and selective targeting of Plk1 can be achieved by the use of siRNNs.


Assuntos
Proteínas de Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adolescente , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Mensageiro , Quinase 1 Polo-Like
6.
Cell Death Dis ; 9(9): 846, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154400

RESUMO

Glucocorticoids (GCs) are metabolic hormones with immunosuppressive effects that have proven effective drugs against childhood acute lymphoblastic leukemia (ALL). Yet, the role of metabolic reprogramming in GC-induced ALL cell death is poorly understood. GCs efficiently block glucose uptake and metabolism in ALL cells, but this does not fully explain the observed induction of autophagy and cell death. Here, we have performed parallel time-course proteomics, metabolomics, and isotope-tracing studies to examine in detail the metabolic effects of GCs on ALL cells. We observed metabolic events associated with growth arrest, autophagy, and catabolism prior to onset of apoptosis: nucleotide de novo synthesis was reduced, while certain nucleobases accumulated; polyamine synthesis was inhibited; and phosphatidylcholine synthesis was induced. GCs suppressed not only glycolysis but also entry of both glucose and glutamine into the TCA cycle. In contrast, expression of glutamine-ammonia ligase (GLUL) and cellular glutamine content was robustly increased by GC treatment, suggesting induction of glutamine synthesis, similar to nutrient-starved muscle. Modulating medium glutamine and dimethyl-α-ketoglutarate (dm-αkg) to favor glutamine synthesis reduced autophagosome content of ALL cells, and dm-αkg also rescued cell viability. These data suggest that glutamine synthesis affects autophagy and possibly onset of cell death in response to GCs, which should be further explored to understand mechanism of action and possible sources of resistance.


Assuntos
Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos
7.
EJNMMI Res ; 8(1): 27, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619657

RESUMO

BACKGROUND: Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. METHODS: The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 105 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. RESULTS: A total of 1 × 104 LNCaP cells mixed in a pellet of 2 × 105 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 105 and 1 × 106 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. CONCLUSIONS: Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the presence of background. The obtained image detection limits and characteristic quantification properties of Ga68-PSMA-11-PET/CT are essential hallmarks for the individualization of patient management. The use of the standardized uptake value for Ga68-PSMA-11-PET/CT image quantification should be precluded.

8.
J Control Release ; 261: 199-206, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28684168

RESUMO

Epidemiological studies of childhood leukemia survivors reveal an alarmingly high incidence of chronic health disabilities after treatment, therefore, more specific therapies need to be developed. Polo-like kinase 1 (Plk1) is a key player in mitosis and a target for drug development as it is upregulated in multiple cancer types. Small molecules targeting Plk1 are mainly ATP-competitors and, therefore, are known to elicit side effects due to lack of specificity. RNA interference (RNAi) is known for its high catalytic activity and target selectivity; however, the biggest barrier for its introduction into clinical use is its delivery. RNAi prodrugs are modified, self-delivering short interfering Ribonucleic Neutrals (siRNNs), cleaved by cytoplasmic enzymes into short interfering Ribonucleic Acids (siRNAs) once inside cells. In this study we aimed to investigate the potential of siRNNs as therapeutic tools in T-acute lymphoblastic leukemia (T-ALL) using T-ALL cell lines and patient-derived samples. We demonstrate for the first time that RNAi prodrugs (siRNNs) targeting Plk1, can enter pediatric T-ALL patient cells without a transfection reagent and induce Plk1 knockdown on both protein and mRNA levels resulting in G2/M-arrest and apoptosis. We also show that siRNNs targeting Plk1 generate less toxicity in normal cells compared to the small molecule Plk1 inhibitor, BI6727, suggesting a potentially good therapeutic index.


Assuntos
Proteínas de Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Apoptose/genética , Linhagem Celular Tumoral , Criança , Sistemas de Liberação de Medicamentos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Pró-Fármacos , Pteridinas/farmacologia , Pteridinas/toxicidade , RNA Mensageiro/genética , RNA Interferente Pequeno/toxicidade , Quinase 1 Polo-Like
9.
Oncotarget ; 6(35): 37066-82, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26416459

RESUMO

Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia , Embrião de Mamíferos/patologia , Fibroblastos/patologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Neoplasias da Próstata/patologia , Animais , Antineoplásicos/farmacologia , Proteína 5 Relacionada à Autofagia , Western Blotting , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Necrose , Niacinamida/farmacologia , Fagossomos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sorafenibe , Análise Serial de Tecidos
10.
Exp Cell Res ; 319(5): 600-11, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246572

RESUMO

The molecular chaperone Hsp90 is required to maintain the activity of many signaling proteins, including members of the JAK/STAT and the PI3K pathways. Inhibitors of Hsp90 (Hsp90-Is) demonstrated varying activity against multiple myeloma (MM) in clinical trials. We aimed to determine which signaling pathways that account for the differential sensitivity to the Hsp90-I 17DMAG on a panel of MM cell lines and freshly obtained MM cells. Three CD45(+) cell lines with an activated JAK/STAT3 pathway were sensitive to 17DMAG and underwent prominent apoptosis upon treatment, while the majority of CD45(-) cell lines, that were dependent on the activated PI3K pathway, were more resistant to the drug. Culturing the most resistant cell line, LP1, in the presence of IL-6 resulted in up-regulation of CD45 and pSTAT3, and sensitized to 17DMAG-induced apoptosis, primarily in the induced CD45(+) sub-population of cells. The high CD45 expressers among primary myeloma cells also expressed significantly higher levels of pSTAT3, as compared to the low CD45 expressers. Ex vivo treatment of primary myeloma cells with 17DMAG resulted in a stronger caspase3 activation in tumor samples with the prevalence of high CD45 expressers. STAT3 activity was efficiently inhibited by Hsp90-Is in both cell lines and primary cells suggesting an importance of STAT3 inactivation for the pro-apoptotic effects of HSP90-Is. Indeed, over-expression of STAT3C, a variant with an increased DNA binding activity, in U266 cells protected them from 17DMAG-induced cell death. The down-regulation of the STAT3 target gene Mcl-1 at both the mRNA and protein levels following 17DMAG treatment was significantly attenuated in STAT3C-expressing cells, and transient over-expression of Mcl-1 protected U266 cells from 17DMAG-induced cell death. The finding that CD45(+) MM cells with an IL-6-activated JAK/STAT3 pathway are particularly sensitive to Hsp90-Is as compared to the low CD45 expressers may provide a rational basis for selection of MM patients amenable to Hsp90-I treatment.


Assuntos
Benzoquinonas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Antígenos Comuns de Leucócito/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Exp Cell Res ; 317(1): 9-19, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20937272

RESUMO

Interferon-alpha (IFNα)-induced cell death of tumor cells is likely mediated through several signaling pathways. We previously demonstrated that blocking the activation of phosphoinositide-3-kinase, PI3K, or mammalian target of rapamycin, mTOR, partially inhibited apoptosis induced by IFNα. Here, we postulate using pharmacological inhibition and dominant negative mutants that activation of signal transducer and activator of transcription-1, STAT1, is also required for the cell death induced by IFNα. Inhibition of STAT1 tyrosine phosphorylation and DNA binding by a naturally occurring rotenoid deguelin also rescued U266 myeloma cell lines from IFNα-induced apoptosis. Deguelin had no effect on upstream Jak kinases or STAT2 phosphorylation suggesting the involvement of a yet unknown mechanism. Inhibition of STAT1 tyrosine phosphorylation and activity was independent of the known effects of deguelin on PI3K, Akt or mTOR as shown using selective pharmacological inhibitors against these kinases. The combination of deguelin and PI3K or mTOR antagonists further inhibited apoptosis suggesting that both the Jak-STAT and the PI3K/mTOR pathways contribute to the induction of apoptosis by IFNα in these cells. Over-expression of STAT1-Y701A or K410/413A mutants in Rhek-1 keratinocytes largely inhibited apoptosis further supporting the importance of STAT1 phosphorylation and activity for IFNα-induced cell death. Thus, at least two signaling pathways, one of which requires STAT1 activation, cooperate to mediate IFNα-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Interferon-alfa/farmacologia , Fator de Transcrição STAT1/metabolismo , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Proteína Oncogênica v-akt/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Rotenona/análogos & derivados , Rotenona/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Transfecção
12.
EMBO J ; 28(5): 578-90, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19165151

RESUMO

Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2alpha, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2alpha (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.


Assuntos
Antineoplásicos/farmacologia , Calreticulina/fisiologia , Morte Celular/imunologia , Retículo Endoplasmático/metabolismo , Antraciclinas/imunologia , Antraciclinas/farmacologia , Antineoplásicos/imunologia , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Exocitose , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Compostos Organoplatínicos/imunologia , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Fosforilação , Proteínas SNARE/metabolismo , Raios Ultravioleta , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , eIF-2 Quinase/metabolismo
13.
Mol Biol Cell ; 19(1): 41-50, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942603

RESUMO

Interferon (IFN)alpha induces apoptosis via Bak and Bax and the mitochondrial pathway. Here, we investigated the role of known IFNalpha-induced signaling cascades upstream of Bak activation. By pharmacological and genetic inhibition of the kinases protein kinase C (PKC)delta, extracellular signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) in U266-1984 and RHEK-1 cells, we could demonstrate that all three enzymes are critical for the apoptosis-associated mitochondrial events and apoptotic cell death induced by IFNalpha, at a step downstream of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Furthermore, the activation of JNK was found to occur in a PKCdelta/ERK-dependent manner. Inhibition of these kinases did not affect the canonical IFNalpha-stimulated Janus tyrosine kinase-signal transducer and activator of transcription signaling or expression of IFN-responsive genes. Therefore, enucleated cells (cytoplasts) were examined for IFNalpha-induced apoptosis, to test directly whether this process depends on gene transcription. Cytoplasts were found to undergo apoptosis after IFNalpha treatment, as analyzed by several apoptosis markers by using flow cytometry, live cell imaging, and biochemical analysis of flow-sorted cytoplasts. Furthermore, inhibition of mTOR, ERK, and JNK blocked IFNalpha-induced apoptosis in cytoplasts. In conclusion, IFNalpha-induced apoptosis requires activation of ERK1/2, PKCdelta, and JNK downstream of PI3K and mTOR, and it can occur in a nucleus-independent manner, thus demonstrating for the first time that IFNalpha induces apoptosis in the absence of de novo transcription.


Assuntos
Apoptose/efeitos dos fármacos , Núcleo Celular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interferon-alfa/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Ativação Enzimática/efeitos dos fármacos , Genes Dominantes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Proteína Quinase C-delta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição STAT/metabolismo , Serina-Treonina Quinases TOR
14.
Mol Biol Cell ; 16(8): 3821-31, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15917298

RESUMO

Here, we identified caspase-2, protein kinase C (PKC)delta, and c-Jun NH2-terminal kinase (JNK) as key components of the doxorubicin-induced apoptotic cascade. Using cells stably transfected with an antisense construct for caspase-2 (AS2) as well as a chemical caspase-2 inhibitor, we demonstrate that caspase-2 is required in doxorubicin-induced apoptosis. We also identified PKCdelta as a novel caspase-2 substrate. PKCdelta was cleaved/activated in a caspase-2-dependent manner after doxorubicin treatment both in cells and in vitro. PKCdelta is furthermore required for efficient doxorubicin-induced apoptosis because its chemical inhibition as well as adenoviral expression of a kinase dead (KD) mutant of PKCdelta severely attenuated doxorubicin-induced apoptosis. Furthermore, PKCdelta and JNK inhibition show that PKCdelta lies upstream of JNK in doxorubicin-induced death. Jnk-deficient mouse embryo fibroblasts (MEFs) were highly resistant to doxorubicin compared with wild type (WT), as were WT Jurkat cells treated with SP600125, further supporting the importance of JNK in doxorubicin-induced apoptosis. Chemical inhibitors for PKCdelta and JNK do not synergize and do not function in doxorubicin-treated AS2 cells. Caspase-2, PKCdelta, and JNK were furthermore implicated in doxorubicin-induced apoptosis of primary acute lymphoblastic leukemia blasts. The data thus support a sequential model involving caspase-2, PKCdelta, and JNK signaling in response to doxorubicin, leading to the activation of Bak and execution of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Doxorrubicina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Caspase 2 , Inibidores de Caspase , Linhagem Celular , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA