Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(6): 112665, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330911

RESUMO

Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.


Assuntos
Células-Tronco Hematopoéticas , Fatores de Transcrição , Diferenciação Celular/genética , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 12(1): 2717, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976150

RESUMO

Circulating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a promising noninvasive biomarker for cell death. Here, we propose an algorithm, CelFiE, to accurately estimate the relative abundances of cell types and tissues contributing to cfDNA from epigenetic cfDNA sequencing. In contrast to previous work, CelFiE accommodates low coverage data, does not require CpG site curation, and estimates contributions from multiple unknown cell types that are not available in external reference data. In simulations, CelFiE accurately estimates known and unknown cell type proportions from low coverage and noisy cfDNA mixtures, including from cell types composing less than 1% of the total mixture. When used in two clinically-relevant situations, CelFiE correctly estimates a large placenta component in pregnant women, and an elevated skeletal muscle component in amyotrophic lateral sclerosis (ALS) patients, consistent with the occurrence of muscle wasting typical in these patients. Together, these results show how CelFiE could be a useful tool for biomarker discovery and monitoring the progression of degenerative disease.


Assuntos
Algoritmos , Esclerose Lateral Amiotrófica/genética , Ácidos Nucleicos Livres/genética , Metilação de DNA , Epigênese Genética , Adulto , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/sangue , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/classificação , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Especificidade de Órgãos , Gravidez , Trimestres da Gravidez/sangue , Trimestres da Gravidez/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137359

RESUMO

Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/prevenção & controle , Fatores de Transcrição SOXF/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Fenômenos Biofísicos , Vasos Sanguíneos/embriologia , Modelos Animais de Doenças , Genômica , Camundongos , Proteômica , Resultado do Tratamento , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/antagonistas & inibidores
5.
Elife ; 62017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28072389

RESUMO

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila , Teste de Complementação Genética , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína FUS de Ligação a RNA/metabolismo
6.
Development ; 143(5): 774-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811383

RESUMO

Congenital heart defects are the most common birth defects in humans, and those that affect the proper alignment of the outflow tracts and septation of the ventricles are a highly significant cause of morbidity and mortality in infants. A late differentiating population of cardiac progenitors, referred to as the anterior second heart field (AHF), gives rise to the outflow tract and the majority of the right ventricle and provides an embryological context for understanding cardiac outflow tract alignment and membranous ventricular septal defects. However, the transcriptional pathways controlling AHF development and their roles in congenital heart defects remain incompletely elucidated. Here, we inactivated the gene encoding the transcription factor MEF2C in the AHF in mice. Loss of Mef2c function in the AHF results in a spectrum of outflow tract alignment defects ranging from overriding aorta to double-outlet right ventricle and dextro-transposition of the great arteries. We identify Tdgf1, which encodes a Nodal co-receptor (also known as Cripto), as a direct transcriptional target of MEF2C in the outflow tract via an AHF-restricted Tdgf1 enhancer. Importantly, both the MEF2C and TDGF1 genes are associated with congenital heart defects in humans. Thus, these studies establish a direct transcriptional pathway between the core cardiac transcription factor MEF2C and the human congenital heart disease gene TDGF1. Moreover, we found a range of outflow tract alignment defects resulting from a single genetic lesion, supporting the idea that AHF-derived outflow tract alignment defects may constitute an embryological spectrum rather than distinct anomalies.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/genética , Feminino , Deleção de Genes , Coração/embriologia , Cardiopatias Congênitas/genética , Comunicação Interventricular/genética , Ventrículos do Coração , Humanos , Hibridização In Situ , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/fisiologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Morfogênese/genética , Proteínas de Neoplasias/genética , Organogênese , Análise de Sequência de RNA , Distribuição Tecidual , Transcrição Gênica , Transposição dos Grandes Vasos/genética
7.
Dev Cell ; 26(1): 45-58, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23830865

RESUMO

Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.


Assuntos
Aorta/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Aorta/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Endocárdio/embriologia , Endocárdio/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Regulador Transcricional ERG , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Curr Opin Hematol ; 19(3): 199-205, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406820

RESUMO

PURPOSE OF REVIEW: Vasculogenesis and hematopoiesis are essential for development. Recently, the ETS domain transcription factor Etv2 has been identified as an essential regulator of vasculogenesis and hematopoiesis. Here, we review the recent studies that have established the critical role of Etv2 in the specification of mesoderm to blood and endothelial cells. RECENT FINDINGS: Loss and gain-of-function studies have demonstrated the conserved role of Etv2 in endothelial and hematopoietic development. Recent studies have placed Etv2 at or near the top of the hierarchy in specification of these lineages and have begun to dissect the upstream regulators and downstream effectors of Etv2 function using multiple model organisms and experimental systems. SUMMARY: Etv2 is essential for the specification of endothelial and hematopoietic lineages. Understanding the mechanisms through which Etv2 specifies endothelial and blood cells by defining upstream transcriptional regulators and cofactors will lead to greater insight into vasculogenesis and hematopoiesis, and may help to identify therapeutic targets to treat vascular disorders or to promote or inhibit vessel growth.


Assuntos
Células Endoteliais/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Neovascularização Fisiológica/fisiologia , Proteína Proto-Oncogênica c-ets-2/fisiologia , Diferenciação Celular/fisiologia , Humanos
9.
Dev Biol ; 361(2): 439-49, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22056786

RESUMO

The developing heart contains an inner tube of specialized endothelium known as endocardium, which performs multiple essential functions. In spite of the essential role of the endocardium in heart development and function, the transcriptional pathways that regulate its development remain largely undefined. GATA4 is a zinc finger transcription factor that is expressed in multiple cardiovascular lineages and is required for endocardial cushion development and embryonic viability, but the transcriptional pathways upstream of Gata4 in the endocardium and its derivatives in the endocardial cushions are unknown. Here, we describe a distal enhancer from the mouse Gata4 gene that is briefly active in multiple cardiac lineages early in cardiac development but restricts to the endocardium where it remains active through cardiogenesis. The activity of this Gata4 cardiac enhancer in transgenic embryos and in cultured aortic endothelial cells is dependent on four ETS sites. To identify which ETS transcription factors might be involved in Gata4 regulation via the ETS sites in the enhancer, we determined the expression profile of 24 distinct ETS factors in embryonic mouse hearts. Among multiple ETS transcripts present, ETS1, FLI1, ETV1, ETV5, ERG, and ETV6 were the most abundant in the early embryonic heart. We found that ETS1, FLI1, and ERG were strongly expressed in the heart at embryonic day 8.5 and that ETS1 and ERG bound to the endogenous Gata4 enhancer in cultured endothelial cells. Thus, these studies define the ETS expression profile in the early embryonic heart and identify an ETS-dependent enhancer from the Gata4 locus.


Assuntos
Elementos Facilitadores Genéticos , Fator de Transcrição GATA4/genética , Coração/embriologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação , Bovinos , Sequência Conservada/genética , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/metabolismo , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos/genética , Camundongos , Dados de Sequência Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição , Regulador Transcricional ERG , Transgenes/genética
10.
J Clin Invest ; 121(7): 2668-78, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21633168

RESUMO

Numerous studies have suggested a link between the angiogenic FGF and VEGF signaling pathways; however, the nature of this link has not been established. To evaluate this relationship, we investigated VEGF signaling in ECs with disrupted FGF signaling in vitro and in vivo. ECs lacking FGF signaling became unresponsive to VEGF, caused by downregulation of VEGF receptor 2 (VEGFR2) expression after reduced Vegfr2 enhancer activation. FGF mediated VEGFR2 expression via activation of Erk1/2. Transcriptional analysis revealed that Ets transcription factors controlled VEGFR2 expression in an FGF- and Erk1/2-dependent manner. Mice with defective FGF signaling exhibited loss of vascular integrity and reduced vascular morphogenesis. Thus, basal FGF stimulation of the endothelium is required for maintenance of VEGFR2 expression and the ability to respond to VEGF stimulation and accounts for the hierarchic control of vascular formation by FGFs and VEGF.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Ativação Enzimática , Fatores de Crescimento de Fibroblastos/genética , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
Pediatr Cardiol ; 31(3): 391-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20135106

RESUMO

The endocardium, the endothelial lining of the heart, plays complex and critical roles in heart development, particularly in the formation of the cardiac valves and septa, the division of the truncus arteriosus into the aortic and pulmonary trunks, the development of Purkinje fibers that form the cardiac conduction system, and the formation of trabecular myocardium. Current data suggest that the endocardium is a regionally specialized endothelium that arises through a process of de novo vasculogenesis from a distinct population of mesodermal cardiogenic precursors in the cardiac crescent. In this article, we review recent developments in the understanding of the embryonic origins of the endocardium. Specifically, we summarize vasculogenesis and specification of endothelial cells from mesodermal precursors, and we review the transcriptional pathways involved in these processes. We discuss the lineage relationships between the endocardium and other endothelial populations and between the endocardium and the myocardium. Finally, we explore unresolved questions about the lineage relationships between the endocardium and the myocardium. One of the central questions involves the timing with which mesodermal cells, which arise in the primitive streak and migrate to the cardiac crescent, become committed to an endocardial fate. Two competing conceptual models of endocardial specification have been proposed. In the first, mesodermal precursor cells in the cardiac crescent are prespecified to become either endocardial or myocardial cells, while in the second, fate plasticity is retained by bipotential cardiogenic cells in the cardiac crescent. We propose a third model that reconciles these two views and suggest future experiments that might resolve this question.


Assuntos
Endocárdio/embriologia , Coração/embriologia , Miocárdio , Endocárdio/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Mesenquimais , Miócitos Cardíacos
12.
Dev Cell ; 16(2): 180-95, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19217421

RESUMO

The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Proliferação de Células , Endotélio Vascular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Neovascularização Patológica , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra
13.
Cell ; 135(6): 1053-64, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19070576

RESUMO

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Vasos Sanguíneos/embriologia , Embrião de Mamíferos/citologia , Embrião não Mamífero/metabolismo , Endotélio/embriologia , Fibroblastos/metabolismo , Humanos , Camundongos , Xenopus , Peixe-Zebra
14.
Mol Cell Biol ; 28(17): 5420-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591257

RESUMO

The anterior heart field (AHF) comprises a population of mesodermal progenitor cells that are added to the nascent linear heart to give rise to the majority of the right ventricle, interventricular septum, and outflow tract in mammals and birds. The zinc finger transcription factor GATA4 functions as an integral member of the cardiac transcription factor network in the derivatives of the AHF. In addition to its role in cardiac differentiation, GATA4 is also required for cardiomyocyte replication, although the transcriptional targets of GATA4 required for proliferation have not been previously identified. In the present study, we disrupted Gata4 function exclusively in the AHF and its derivatives. Gata4 AHF knockout mice die by embryonic day 13.5 and exhibit hypoplasia of the right ventricular myocardium and interventricular septum and display profound ventricular septal defects. Loss of Gata4 function in the AHF results in decreased myocyte proliferation in the right ventricle, and we identified numerous cell cycle genes that are dependent on Gata4 by microarray analysis. We show that GATA4 is required for cyclin D2, cyclin A2, and Cdk4 expression in the right ventricle and that the Cyclin D2 and Cdk4 promoters are bound and activated by GATA4 via multiple consensus GATA binding sites in each gene's proximal promoter. These findings establish Cyclin D2 and Cdk4 as direct transcriptional targets of GATA4 and support a model in which GATA4 controls cardiomyocyte proliferation by coordinately regulating numerous cell cycle genes.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Ciclinas/genética , Fator de Transcrição GATA4/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , Miócitos Cardíacos/citologia , Transativadores/metabolismo , Animais , Sítios de Ligação , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Ciclina A/metabolismo , Ciclina A2 , Ciclina D2 , Regulação da Expressão Gênica no Desenvolvimento , Comunicação Interventricular/enzimologia , Ventrículos do Coração/anormalidades , Ventrículos do Coração/enzimologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ativação Transcricional
15.
Mol Cell Biol ; 27(16): 5910-20, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17562853

RESUMO

The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.


Assuntos
Elementos E-Box/genética , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Animais , Sequência de Bases , DNA/metabolismo , Dimerização , Proteínas de Homeodomínio/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação/genética , Proteína Meis1 , Proteína MyoD/genética , Miogenina/genética , Proteínas de Neoplasias/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transcrição Gênica , Ativação Transcricional/genética
16.
Dev Biol ; 275(2): 424-34, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15501228

RESUMO

Members of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors play key roles in the development and differentiation of numerous cell types during mammalian development, including the vascular endothelium. Mef2c is expressed very early in the development of the endothelium, and genetic studies in mice have demonstrated that mef2c is required for vascular development. However, the transcriptional pathways involving MEF2C during endothelial cell development have not been defined. As a first step towards identifying the transcriptional factors upstream of MEF2C in the vascular endothelium, we screened for transcriptional enhancers from the mouse mef2c gene that regulate vascular expression in vivo. In this study, we identified a transcriptional enhancer from the mouse mef2c gene sufficient to direct expression to the vascular endothelium in transgenic embryos. This enhancer is active in endothelial cells within the developing vascular system from very early stages in vasculogenesis, and the enhancer remains robustly active in the vascular endothelium during embryogenesis and in adulthood. This mef2c endothelial cell enhancer contains four perfect consensus Ets transcription factor binding sites that are efficiently bound by Ets-1 protein in vitro and are required for enhancer function in transgenic embryos. Thus, these studies identify mef2c as a direct transcriptional target of Ets factors via an evolutionarily conserved transcriptional enhancer and establish a direct link between these two early regulators of vascular gene expression during endothelial cell development in vivo.


Assuntos
Endotélio Vascular/embriologia , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Regulação Miogênica/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Animais , Sequência de Bases , Evolução Biológica , Clonagem Molecular , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/genética , Componentes do Gene , Imuno-Histoquímica , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese Insercional , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/fisiologia , Plasmídeos/genética , Proteína Proto-Oncogênica c-ets-1 , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-ets , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA