Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1269335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942334

RESUMO

Introduction: Severe respiratory illness is the most prominent manifestation of patients infected with SARS-CoV-2, and yet the molecular mechanisms underlying severe lung disease in COVID-19 affected patients still require elucidation. Human leukocyte antigen class I (HLA-I) expression is crucial for antigen presentation and the host's response to SARS-CoV-2. Methods: To gain insights into the immune response and molecular pathways involved in severe lung disease, we performed immunopeptidomic and proteomic analyses of lung tissues recovered at four COVID-19 autopsy and six non-COVID-19 transplants. Results: We found signals of tissue injury and regeneration in lung fibroblast and alveolar type I/II cells, resulting in the production of highly immunogenic self-antigens within the lungs of COVID-19 patients. We also identified immune activation of the M2c macrophage as the primary source of HLA-I presentation and immunogenicity in this context. Additionally, we identified 28 lung signatures that can serve as early plasma markers for predicting infection and severe COVID-19 disease. These protein signatures were predominantly expressed in macrophages and epithelial cells and were associated with complement and coagulation cascades. Discussion: Our findings emphasize the significant role of macrophage-mediated immunity in the development of severe lung disease in COVID-19 patients.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2 , Proteômica , Pulmão , Biópsia
2.
Am J Respir Cell Mol Biol ; 67(1): 36-49, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377835

RESUMO

Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFß (Transforming Growth Factor ß) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.


Assuntos
Aurora Quinase A , Fibrose Pulmonar Idiopática , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP
3.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393489

RESUMO

Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.


Assuntos
Pulmão/inervação , Pulmão/metabolismo , Macrófagos/metabolismo , Netrina-1/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Feminino , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Netrina-1/genética , Norepinefrina/genética , Norepinefrina/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
4.
Thorax ; 76(5): 456-467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33479039

RESUMO

OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) primarily affects the aged population and is characterised by failure of alveolar regeneration, leading to loss of alveolar type 1 (AT1) cells. Aged mouse models of lung repair have demonstrated that regeneration fails with increased age. Mouse and rat lung repair models have shown retinoic acid (RA) treatment can restore alveolar regeneration. Herein, we seek to determine the signalling mechanisms that become activated on RA treatment prior to injury, which support alveolar differentiation. DESIGN: Partial pneumonectomy lung injury model and next-generation sequencing of sorted cell populations were used to uncover molecular targets regulating alveolar repair. In vitro organoids generated from epithelial cells of mouse or patient with IPF co-cultured with young, aged or RA-pretreated murine fibroblasts were used to test potential targets. MAIN OUTCOME MEASUREMENTS: Known alveolar epithelial cell differentiation markers, including HOPX and AGER for AT1 cells, were used to assess outcome of treatments. RESULTS: Gene expression analysis of sorted fibroblasts and epithelial cells isolated from lungs of young, aged and RA-pretreated aged mice predicted increased platelet-derived growth factor subunit A (PDGFA) signalling that coincided with regeneration and alveolar epithelial differentiation. Addition of PDGFA induced AT1 and AT2 differentiation in both mouse and human IPF lung organoids generated with aged fibroblasts, and PDGFA monoclonal antibody blocked AT1 cell differentiation in organoids generated with young murine fibroblasts. CONCLUSIONS: Our data support the concept that RA indirectly induces reciprocal PDGFA signalling, which activates regenerative fibroblasts that support alveolar epithelial cell differentiation and repair, providing a potential therapeutic strategy to influence the pathogenesis of IPF.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Tretinoína/farmacologia , Fatores Etários , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
5.
Nat Med ; 26(2): 244-251, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959991

RESUMO

Mucociliary clearance, the physiological process by which mammalian conducting airways expel pathogens and unwanted surface materials from the respiratory tract, depends on the coordinated function of multiple specialized cell types, including basal stem cells, mucus-secreting goblet cells, motile ciliated cells, cystic fibrosis transmembrane conductance regulator (CFTR)-rich ionocytes, and immune cells1,2. Bronchiectasis, a syndrome of pathological airway dilation associated with impaired mucociliary clearance, may occur sporadically or as a consequence of Mendelian inheritance, for example in cystic fibrosis, primary ciliary dyskinesia (PCD), and select immunodeficiencies3. Previous studies have identified mutations that affect ciliary structure and nucleation in PCD4, but the regulation of mucociliary transport remains incompletely understood, and therapeutic targets for its modulation are lacking. Here we identify a bronchiectasis syndrome caused by mutations that inactivate NIMA-related kinase 10 (NEK10), a protein kinase with previously unknown in vivo functions in mammals. Genetically modified primary human airway cultures establish NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport but which is dispensable for normal ciliary number, radial structure, and beat frequency. Together, these data identify a novel and likely targetable signaling axis that controls motile ciliary function in humans and has potential implications for other respiratory disorders that are characterized by impaired mucociliary clearance.


Assuntos
Ciliopatias/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Depuração Mucociliar , Quinases Relacionadas a NIMA/metabolismo , Adolescente , Adulto , Separação Celular , Criança , Ciliopatias/metabolismo , Células Epiteliais/metabolismo , Exoma , Feminino , Citometria de Fluxo , Células HEK293 , Homozigoto , Humanos , Microscopia de Contraste de Fase , Microscopia de Vídeo , Mutação , Fenótipo , Proteoma , Sistema Respiratório , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X , Adulto Jovem
7.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185671

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease causing fibrotic remodeling of the peripheral lung, leading to respiratory failure. Peripheral pulmonary epithelial cells lose normal alveolar epithelial gene expression patterns and variably express genes associated with diverse conducting airway epithelial cells, including basal cells. Single-cell RNA sequencing of pulmonary epithelial cells isolated from IPF lung tissue demonstrated altered expression of LncRNAs, including increased MEG3. MEG3 RNA was highly expressed in subsets of the atypical IPF epithelial cells and correlated with conducting airway epithelial gene expression patterns. Expression of MEG3 in human pulmonary epithelial cell lines increased basal cell-associated RNAs, including TP63, KRT14, STAT3, and YAP1, and enhanced cell migration, consistent with a role for MEG3 in regulating basal cell identity. MEG3 reduced expression of TP73, SOX2, and Notch-associated RNAs HES1 and HEY1, in primary human bronchial epithelial cells, demonstrating a role for MEG3 in the inhibition of genes influencing basal cell differentiation into club, ciliated, or goblet cells. MEG3 induced basal cell genes and suppressed genes associated with terminal differentiation of airway cells, supporting a role for MEG3 in regulation of basal progenitor cell functions, which may contribute to tissue remodeling in IPF.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Queratina-14/genética , Pulmão/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
8.
Am J Respir Cell Mol Biol ; 58(4): 471-481, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211497

RESUMO

Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-ß, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.


Assuntos
Fibroblastos/enzimologia , Pulmão/enzimologia , Fibrose Pulmonar/prevenção & controle , Quinases Associadas a rho/metabolismo , Animais , Apoptose , Bleomicina , Permeabilidade Capilar , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Fibroblastos/patologia , Haploinsuficiência , Humanos , Pulmão/patologia , Camundongos Knockout , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Quinases Associadas a rho/deficiência , Quinases Associadas a rho/genética
9.
Nat Med ; 23(12): 1405-1415, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058717

RESUMO

Maladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodeling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however, the molecular mediators of myofibroblast activation have yet to be fully identified. Here we identify soluble ephrin-B2 (sEphrin-B2) as a new profibrotic mediator in lung and skin fibrosis. We provide molecular, functional and translational evidence that the ectodomain of membrane-bound ephrin-B2 is shed from fibroblasts into the alveolar airspace after lung injury. Shedding of sEphrin-B2 promotes fibroblast chemotaxis and activation via EphB3 and/or EphB4 receptor signaling. We found that mice lacking ephrin-B2 in fibroblasts are protected from skin and lung fibrosis and that a disintegrin and metalloproteinase 10 (ADAM10) is the major ephrin-B2 sheddase in fibroblasts. ADAM10 expression is increased by transforming growth factor (TGF)-ß1, and ADAM10-mediated sEphrin-B2 generation is required for TGF-ß1-induced myofibroblast activation. Pharmacological inhibition of ADAM10 reduces sEphrin-B2 levels in bronchoalveolar lavage and prevents lung fibrosis in mice. Consistent with the mouse data, ADAM10-sEphrin-B2 signaling is upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. These results uncover a new molecular mechanism of tissue fibrogenesis and identify sEphrin-B2, its receptors EphB3 and EphB4 and ADAM10 as potential therapeutic targets in the treatment of fibrotic diseases.


Assuntos
Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Efrina-B2/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Proteínas de Membrana/fisiologia , Miofibroblastos/fisiologia , Dermatopatias/genética , Pele/patologia , Animais , Células Cultivadas , Exocitose/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/patologia , Transporte Proteico/genética , Pele/metabolismo , Dermatopatias/metabolismo , Dermatopatias/patologia
10.
Arthritis Rheumatol ; 68(12): 2964-2974, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27390295

RESUMO

OBJECTIVE: We previously implicated the lipid mediator lysophosphatidic acid (LPA) as having a role in dermal fibrosis in systemic sclerosis (SSc). The aim of this study was to identify the role of the LPA-producing enzyme autotaxin (ATX), and to connect the ATX/LPA and interleukin-6 (IL-6) pathways in SSc. METHODS: We evaluated the effect of a novel ATX inhibitor, PAT-048, on fibrosis and IL-6 expression in the mouse model of bleomycin-induced dermal fibrosis. We used dermal fibroblasts from SSc patients and control subjects to evaluate LPA-induced expression of IL-6, and IL-6-induced expression of ATX. We next evaluated whether LPA-induced ATX expression is dependent on IL-6, and whether baseline IL-6 expression in fibroblasts from SSc patients is dependent on ATX. Finally, we compared ATX and IL-6 expression in the skin of patients with SSc and healthy control subjects. RESULTS: PAT-048 markedly attenuated bleomycin-induced dermal fibrosis when treatment was initiated before or after the development of fibrosis. LPA stimulated expression of IL-6 in human dermal fibroblasts, and IL-6 stimulated fibroblast expression of ATX, connecting the ATX/LPA and IL-6 pathways in an amplification loop. IL-6 knockdown abrogated LPA-induced ATX expression in fibroblasts, and ATX inhibition attenuated IL-6 expression in fibroblasts and the skin of bleomycin-challenged mice. Expression of both ATX and IL-6 was increased in SSc skin, and LPA-induced IL-6 levels and IL-6-induced ATX levels were increased in fibroblasts from SSc patients compared with controls. CONCLUSION: ATX is required for the development and maintenance of dermal fibrosis in a mouse model of bleomycin-induced SSc and enables 2 major mediators of SSc fibrogenesis, LPA and IL-6, to amplify the production of each other. Our results suggest that concurrent inhibition of these 2 pathways may be an effective therapeutic strategy for dermal fibrosis in SSc.


Assuntos
Benzoatos/farmacologia , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Animais , Bleomicina/toxicidade , Estudos de Casos e Controles , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/farmacologia , Camundongos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Escleroderma Sistêmico/patologia , Pele/patologia
11.
FASEB J ; 30(6): 2435-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27006447

RESUMO

Lysophosphatidic acid (LPA) is an important mediator of pulmonary fibrosis. In blood and multiple tumor types, autotaxin produces LPA from lysophosphatidylcholine (LPC) via lysophospholipase D activity, but alternative enzymatic pathways also exist for LPA production. We examined the role of autotaxin (ATX) in pulmonary LPA production during fibrogenesis in a bleomycin mouse model. We found that bleomycin injury increases the bronchoalveolar lavage (BAL) fluid levels of ATX protein 17-fold. However, the LPA and LPC species that increase in BAL of bleomycin-injured mice were discordant, inconsistent with a substrate-product relationship between LPC and LPA in pulmonary fibrosis. LPA species with longer chain polyunsaturated acyl groups predominated in BAL fluid after bleomycin injury, with 22:5 and 22:6 species accounting for 55 and 16% of the total, whereas the predominant BAL LPC species contained shorter chain, saturated acyl groups, with 16:0 and 18:0 species accounting for 56 and 14% of the total. Further, administration of the potent ATX inhibitor PAT-048 to bleomycin-challenged mice markedly decreased ATX activity systemically and in the lung, without effect on pulmonary LPA or fibrosis. Therefore, alternative ATX-independent pathways are likely responsible for local generation of LPA in the injured lung. These pathways will require identification to therapeutically target LPA production in pulmonary fibrosis.-Black, K. E., Berdyshev, E., Bain, G., Castelino, F. V., Shea, B. S., Probst, C. K., Fontaine, B. A., Bronova, I., Goulet, L., Lagares, D., Ahluwalia, N., Knipe, R. S., Natarajan, V., Tager, A. M. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis.


Assuntos
Lesão Pulmonar/induzido quimicamente , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Benzoatos/farmacologia , Bleomicina/toxicidade , Regulação da Expressão Gênica/fisiologia , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/genética , Fibrose Pulmonar/induzido quimicamente
12.
Am J Respir Cell Mol Biol ; 45(4): 675-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21257926

RESUMO

The tissue microenvironment plays a critical role in regulating inflammation. Chronic inflammation leads to an influx of inflammatory cells and mediators, extracellular matrix turnover, and increased extracellular adenosine. Low molecular weight (LMW) fragments of hyaluronan (HA), a matrix component, play a critical role in lung inflammation and fibrosis by inducing inflammatory gene expression at the injury site. Adenosine, a crucial negative regulator of inflammation, protects tissues from immune destruction via the adenosine A2a receptor (A2aR). Therefore, these two extracellular products of inflammation play opposing roles in regulating immune responses. As such, we wanted to determine the effect of LMW HA on A2aR function. In this article, we demonstrate that LMW HA causes a rapid, significant, and sustained down-regulation of the A2aR. CD44 was found to be necessary for LMW HA to down-modulate the A2aR as was protein kinase C signaling. We also demonstrate that LMW HA induces A2aR down-regulation during inflammation in vivo, and that this down-regulation can be blocked by treatment with an HA-blocking peptide. Because adenosine plays a critical role in limiting inflammation, our data provide a novel mechanism whereby LMW HA itself may further augment inflammation. By defining the pro- and anti-inflammatory properties of extracellular matrix components, we will be better able to identify specific pharmacologic targets as potential therapies.


Assuntos
Ácido Hialurônico/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Peritoneais/metabolismo , Fragmentos de Peptídeos/metabolismo , Pneumonia/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Lipopolissacarídeos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Peptídeos/farmacologia , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/prevenção & controle , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Receptor A2A de Adenosina/genética , Fatores de Tempo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Am J Respir Cell Mol Biol ; 40(3): 251-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18703794

RESUMO

Endogenous mediators within the inflammatory milieu play a critical role in directing the scope, duration, and resolution of inflammation. High-molecular-weight extracellular matrix hyaluronan (HA) helps to maintain homeostasis. During inflammation, hyaluronan is broken down into fragments that induce chemokines and cytokines, thereby augmenting the inflammatory response. Tissue-derived adenosine, released during inflammation, inhibits inflammation via the anti-inflammatory A2 adenosine receptor (A2aR). We demonstrate that adenosine modulates HA-induced gene expression via the A2aR. A2aR stimulation inhibits HA fragment-induced pro-fibrotic genes TNF-alpha, keratinocyte chemoattractant (KC), macrophage inflammatory protein (MIP)-2, and MIP-1alpha while simultaneously synergizing with hyaluronan fragments to up-regulate the TH1 cytokine IL-12. Interestingly, A2aR stimulation mediates these affects via the novel cAMP-activated guanine nucleotide exchange factor EPAC. In addition, A2aR-null mice are more susceptible to bleomycin-induced lung injury, consistent with a role for endogenous adenosine in inhibiting the inflammation that may lead to fibrosis. Indeed, the bleomycin treated A2aR-null mice demonstrate increased lung inflammation, HA accumulation, and histologic damage. Overall, our data elucidate the opposing roles of tissue-derived HA fragments and adenosine in regulating noninfectious lung inflammation and support the pursuit of A2aR agonists as a means of pharmacologically inhibiting inflammation that may lead to fibrosis.


Assuntos
Adenosina/metabolismo , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Ácido Hialurônico/genética , Interleucina-12/imunologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Receptor A2A de Adenosina/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
CNS Drugs ; 21(4): 293-318, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17381184

RESUMO

Infections with fungi cause significant morbidity in the immunocompromised host and invasion of the CNS may lead to devastating consequences. Vulnerable individuals include those with haematological malignancies, transplant recipients, and those infected with HIV. Potential pathogens include yeasts, Aspergillus spp., other moulds of an increasing variety, and a range of dimorphic fungi, often associated with particular geographical locations. Antifungal treatments include polyenes such as amphotericin B and its lipid formulations, azoles such as fluconazole and itraconazole, and the more recent voriconazole and posaconazole. The new antifungal class of echinocandins, such as caspofungin, micafungin and anidulafungin, typically lack CNS penetration. Amphotericin B and flucytosine are used to initiate treatment for CNS yeast infections caused by Candida and Cryptococcus neoformans. Voriconazole is preferred for aspergillus, although amphotericin B, particularly in lipid formulation, is also useful. Reliable treatment data are lacking for CNS infections with most of the non-aspergillus moulds; posaconazole holds promise for the zygomycetes and perhaps some of the rarer pigmented fungi, but amphotericin B preparations are still recommended. Oral fluconazole is effective for the CNS manifestations of coccidioides, while histoplasmosis and blastomycoses typically require amphotericin B therapy. Effective treatment requires a definitive diagnosis, which is often challenging in the population at risk of CNS fungal infections.


Assuntos
Infecções Fúngicas do Sistema Nervoso Central/imunologia , Infecções Fúngicas do Sistema Nervoso Central/terapia , Hospedeiro Imunocomprometido , Antifúngicos/uso terapêutico , Infecções Fúngicas do Sistema Nervoso Central/classificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA