Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Oncol ; 14: 1330419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450186

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.

2.
PLoS Comput Biol ; 19(6): e1011163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327214

RESUMO

BACKGROUND: Microbiome research is providing important new insights into the metabolic interactions of complex microbial ecosystems involved in fields as diverse as the pathogenesis of human diseases, agriculture and climate change. Poor correlations typically observed between RNA and protein expression datasets make it hard to accurately infer microbial protein synthesis from metagenomic data. Additionally, mass spectrometry-based metaproteomic analyses typically rely on focused search sequence databases based on prior knowledge for protein identification that may not represent all the proteins present in a set of samples. Metagenomic 16S rRNA sequencing only targets the bacterial component, while whole genome sequencing is at best an indirect measure of expressed proteomes. Here we describe a novel approach, MetaNovo, that combines existing open-source software tools to perform scalable de novo sequence tag matching with a novel algorithm for probabilistic optimization of the entire UniProt knowledgebase to create tailored sequence databases for target-decoy searches directly at the proteome level, enabling metaproteomic analyses without prior expectation of sample composition or metagenomic data generation and compatible with standard downstream analysis pipelines. RESULTS: We compared MetaNovo to published results from the MetaPro-IQ pipeline on 8 human mucosal-luminal interface samples, with comparable numbers of peptide and protein identifications, many shared peptide sequences and a similar bacterial taxonomic distribution compared to that found using a matched metagenome sequence database-but simultaneously identified many more non-bacterial peptides than the previous approaches. MetaNovo was also benchmarked on samples of known microbial composition against matched metagenomic and whole genomic sequence database workflows, yielding many more MS/MS identifications for the expected taxa, with improved taxonomic representation, while also highlighting previously described genome sequencing quality concerns for one of the organisms, and identifying an experimental sample contaminant without prior expectation. CONCLUSIONS: By estimating taxonomic and peptide level information directly on microbiome samples from tandem mass spectrometry data, MetaNovo enables the simultaneous identification of peptides from all domains of life in metaproteome samples, bypassing the need for curated sequence databases to search. We show that the MetaNovo approach to mass spectrometry metaproteomics is more accurate than current gold standard approaches of tailored or matched genomic sequence database searches, can identify sample contaminants without prior expectation and yields insights into previously unidentified metaproteomic signals, building on the potential for complex mass spectrometry metaproteomic data to speak for itself.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , RNA Ribossômico 16S/genética , Bases de Dados de Proteínas , Peptídeos/genética , Peptídeos/análise , Microbiota/genética , Bactérias/genética , Proteoma/genética
3.
Sci Rep ; 12(1): 20171, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418423

RESUMO

Karyopherin beta 1 (Kpnß1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnß1 binding partners in normal and cancer cells. IP-MS identified 100 potential Kpnß1 binding partners in non-cancer hTERT-RPE1, 179 in HeLa cervical cancer, 147 in WHCO5 oesophageal cancer and 176 in KYSE30 oesophageal cancer cells, including expected and novel interaction partners. 38 binding proteins were identified in all cell lines, with the majority involved in RNA metabolism. 18 binding proteins were unique to the cancer cells, with many involved in protein translation. Western blot analysis validated the interaction of known and novel binding partners with Kpnß1 and revealed enriched interactions between Kpnß1 and select proteins in cancer cells, including proteins involved in cancer development, such as Kpnα2, Ran, CRM1, CCAR1 and FUBP1. Together, this study shows that Kpnß1 interacts with numerous proteins, and its enhanced interaction with certain proteins in cancer cells likely contributes to the cancer state.


Assuntos
Neoplasias Esofágicas , Neoplasias do Colo do Útero , Feminino , Humanos , beta Carioferinas , Espectrometria de Massas , Imunoprecipitação , Proteínas de Ciclo Celular , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA
4.
Heart Fail Rev ; 27(1): 357-368, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653980

RESUMO

Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A ß-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.


Assuntos
Febre Reumática , Cardiopatia Reumática , Progressão da Doença , Ecocardiografia , Valvas Cardíacas , Humanos
5.
Br J Cancer ; 126(2): 238-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728792

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS: We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS: We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS: We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Análise Serial de Proteínas/métodos , Idoso , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/imunologia , Biologia Computacional/métodos , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Masculino , Prognóstico , Curva ROC
6.
Clin Infect Dis ; 75(1): e857-e864, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34893824

RESUMO

BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.


Assuntos
Ad26COVS1 , COVID-19 , Infecções por HIV , Ad26COVS1/administração & dosagem , Ad26COVS1/efeitos adversos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , HIV , Infecções por HIV/complicações , Humanos , SARS-CoV-2 , Vacinação
7.
Int J Cancer ; 150(2): 347-361, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591985

RESUMO

Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNß1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNß1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Neoplasias Esofágicas/diagnóstico , Proteínas Nucleares/metabolismo , Secretoma/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Transporte Ativo do Núcleo Celular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Adulto Jovem
8.
Am J Cancer Res ; 11(11): 5680-5700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873487

RESUMO

Sarcomas are diverse cancers of mesenchymal origin, with compromised clinical management caused by insufficient diagnostic biomarkers and limited treatment options. The transcription factor TBX3 is upregulated in a diverse range of sarcoma subtypes, where it plays a direct oncogenic role, and it may thus represent a novel therapeutic target. To identify versatile ways to target TBX3, we performed affinity purification coupled by mass spectrometry to identify putative TBX3 protein cofactors that regulate its oncogenic activity in sarcomas. Here we identify and validate the multifunctional phosphoprotein nucleolin as a TBX3 cofactor. We show that nucleolin is co-expressed with TBX3 in several sarcoma subtypes and their expression levels positively correlate in sarcoma patients which are associated with poor prognosis. Furthermore, we demonstrate that nucleolin and TBX3 interact in chondrosarcoma, liposarcoma and rhabdomyosarcoma cells where they act together to enhance proliferation and migration and regulate a common set of tumor suppressor genes. Importantly, the nucleolin targeting aptamer, AS1411, exhibits selective anti-cancer activity in these cells and mislocalizes TBX3 and nucleolin to the cytoplasm which correlates with the re-expression of the TBX3/nucleolin target tumor suppressors CDKN1A (p21CIP1) and CDKN2A (p14ARF). Our findings provide the first evidence that TBX3 requires nucleolin to promote features of sarcomagenesis and that disruption of the oncogenic TBX3-nucleolin interaction by AS1411 may be a novel approach for treating sarcomas.

9.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918976

RESUMO

Antibodies that block immune regulatory checkpoints (programmed cell death 1, PD-1 and cytotoxic T-lymphocyte-associated antigen 4, CTLA-4) to mobilise immunity have shown unprecedented clinical efficacy against cancer, demonstrating the importance of antigen-specific tumour recognition. Despite this, many patients still fail to benefit from these treatments and additional approaches are being sought. These include mechanisms that boost antigen-specific immunity either by vaccination or adoptive transfer of effector cells. Other than neoantigens, epigenetically regulated and shared antigens such as NY-ESO-1 are attractive targets; however, tissue expression is often heterogeneous and weak. Therefore, peptide-specific therapies combining multiple antigens rationally selected to give additive anti-cancer benefits are necessary to achieve optimal outcomes. Here, we show that Ropporin-1 (ROPN1) and 1B (ROPN1B), cancer restricted antigens, are highly expressed and immunogenic, inducing humoral immunity in patients with advanced metastatic melanoma. By multispectral immunohistochemistry, 88.5% of melanoma patients tested (n = 54/61) showed ROPN1B expression in at least 1 of 2/3 tumour cores in tissue microarrays. Antibody responses against ROPN1A and ROPN1B were detected in 71.2% of melanoma patients tested (n = 74/104), with increased reactivity seen with more advanced disease stages. Thus, ROPN1A and ROPN1B may indeed be viable targets for cancer immunotherapy, alone or in combination with other cancer antigens, and could be combined with additional therapies such as immune checkpoint blockade.

10.
Methods Mol Biol ; 2292: 143-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651359

RESUMO

Advances in mass spectrometry instrumentation have revolutionized analytical capability in clinical proteomics. In parallel, various sample preparation methods have been developed to try to address the inherent complexity and dynamic range of clinical samples, typically involving a combination of depletion of abundant proteins followed by extensive prefractionation. However, the depth of coverage routinely achieved in discovery proteomics experiments on peripheral fluids such as serum, still leaves something to be desired, especially if no depletion or prefractionation is done in order to increase the throughput of clinical samples. Remarkably, despite being an easily accessible, typically sterile and diagnostically rich clinical sample, urine is often overlooked and as such has received less development effort. As an ultrafiltrate of blood, urine contains proteins and protein fragments originating from all parts of the body which may have diagnostic or prognostic potential if accurately and reproducibly quantified. Here, we describe an efficient and simple method for the concentration of urine samples by methanol-chloroform precipitation and subsequent in-solution tryptic digestion prior to discovery or targeted mass spectrometry analysis. We exemplify this method by reference to the discovery of novel candidate urinary biomarkers of schistosomiasis. Importantly, the methods described here have been used to identify >1900 protein groups in human urine by label-free discovery proteomics, without requiring any prior depletion or prefractionation, making this approach amenable to high throughput clinical biomarker studies in many diseases.


Assuntos
Proteinúria/urina , Proteômica/métodos , Esquistossomose/urina , Espectrometria de Massas em Tandem/métodos , Neoplasias da Bexiga Urinária/urina , Animais , Biomarcadores Tumorais/urina , Humanos , Proteinúria/parasitologia , Schistosoma/isolamento & purificação , Esquistossomose/parasitologia , Neoplasias da Bexiga Urinária/parasitologia
11.
Expert Rev Mol Diagn ; 20(12): 1183-1198, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315478

RESUMO

INTRODUCTION: The development of companion diagnostics (CDx) will increase efficacy and cost-benefit markedly, compared to the currently prevailing trial-and-error approach for treatment. Recent improvements in high-throughput protein technology have resulted in large amounts of predictive biomarkers that are potentially useful components of future CDx assays. Current high multiplex protein arrays are suitable for discovery-based approaches, while low-density and more simple arrays are suitable for use in point-of-care facilities. AREA COVERED: This review discusses the technical platforms available for protein array focused CDx, explains the technical details of the platforms and provide examples of clinical use, ranging from multiplex arrays to low-density clinically applicable arrays. We thereafter highlight recent predictive biomarkers within different disease areas, such as oncology and autoimmune diseases. Lastly, we discuss some of the challenges connected to the implementation of CDx assays as point-of-care tests. EXPERT OPINION: Recent advances in the field of protein arrays have enabled high-density arrays permitting large biomarker discovery studies, which are beneficial for future CDx assays. The density of protein arrays range from a single protein to proteome-wide arrays, allowing the discovery of protein signatures that may correlate with drug response. Protein arrays will undoubtedly play a key role in future CDx assays.


Assuntos
Biomarcadores , Técnicas de Diagnóstico Molecular/métodos , Medicina de Precisão/métodos , Análise Serial de Proteínas/métodos , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Gerenciamento Clínico , Ensaios de Triagem em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular/normas , Testes Imediatos , Medicina de Precisão/normas , Análise Serial de Proteínas/normas
12.
Emerg Microbes Infect ; 7(1): 212, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546046

RESUMO

Mycobacterium manages to evade the host cell immune system, partially owing to its ability to survive redox stress after macrophage engulfment. Exposure to redox stress has been linked to later replication, persistence, and latent infection. In this work, mass spectrometry was used to elucidate the cell-wide changes that occur in response to sublethal doses of hydrogen peroxide and nitric oxide over time, with Mycobacterium smegmatis being used as a model organism. A total of 3135 proteins were confidently assigned, of which 1713, 1674, and 1713 were identified under NO, H2O2, and control conditions, respectively. Both treatment conditions resulted in changes of protein expression from the DosR regulon as well as those related to lipid metabolism. Complementary to the changes in the proteome, sublethal exposure to NO and H2O2 improved the survival of the bacteria after macrophage infection. Our data indicate that pre-exposure to sublethal doses of these redox stressors causes an alteration in the expression of proteins related to lipid metabolism, suggesting a link between altered lipid metabolism and enhanced survival in macrophages.


Assuntos
Peróxido de Hidrogênio/farmacologia , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Óxido Nítrico/farmacologia , Proteoma/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/química , Camundongos , Proteínas Quinases/genética , Células RAW 264.7
13.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241395

RESUMO

BACKGROUND: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.


Assuntos
Carcinoma de Células Escamosas/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/patologia , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Matriz Extracelular , Feminino , Fibronectinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
14.
Mamm Genome ; 29(11-12): 790-805, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30178304

RESUMO

Recent developments in the immuno-oncology field strongly support a role for the immune system in both the prevention and progression of melanoma. Melanoma is a highly immunogenic cancer, including its ability to induce tumour antigen-specific B cell and antibody responses through largely unknown mechanisms. This review considers likely hypothetical mechanisms by which anti-tumour surveillance detects pre-cancerous cells and by which immune (including B cell and antibody) responses may be elicited during malignancy. The review further considers potential pro- and anti-tumour functions of B cells and antibodies (including tertiary lymphoid structures) in both the tumour microenvironment and in circulation. Although the vast majority of studies have focused on T cells, recent evidence highlights the important roles of B cells in response to malignancy. B cells and antibodies are also discussed in the context of their potential utility as clinical biomarkers for various applications (as diagnostic, prognostic, therapeutic efficacy, and toxicity proxies), with a particular focus on protein microarray-based antibody detection and quantitation. Although the role of B cells in melanoma is incompletely understood, the measurement of circulating tumour-specific antibodies represents a promising avenue in the search for melanoma-relevant biomarkers.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Sistema Imunitário , Melanoma/imunologia , Anticorpos/imunologia , Humanos , Melanoma/terapia
15.
Front Immunol ; 9: 411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29552014

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced melanoma. The first ICI to demonstrate clinical benefit, ipilimumab, targets cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4); however, the long-term overall survival is just 22%. More than 40 years ago intralesional (IL) bacillus Calmette-Guérin (BCG), a living attenuated strain of Mycobacterium bovis, was found to induce tumor regression by stimulating cell-mediated immunity following a localized and self-limiting infection. We evaluated these two immune stimulants in combination with melanoma with the aim of developing a more effective immunotherapy and to assess toxicity. In this phase I study, patients with histologically confirmed stage III/IV metastatic melanoma received IL BCG injection followed by up to four cycles of intravenous ipilimumab (anti-CTLA-4) (ClinicalTrials.gov number NCT01838200). The trial was discontinued following treatment of the first five patients as the two patients receiving the escalation dose of BCG developed high-grade immune-related adverse events (irAEs) typical of ipilimumab monotherapy. These irAEs were characterized in both patients by profound increases in the repertoire of autoantibodies directed against both self- and cancer antigens. Interestingly, the induced autoantibodies were detected at time points that preceded the development of symptomatic toxicity. There was no overlap in the antigen specificity between patients and no evidence of clinical responses. Efforts to increase response rates through the use of novel immunotherapeutic combinations may be associated with higher rates of irAEs, thus the imperative to identify biomarkers of toxicity remains strong. While the small patient numbers in this trial do not allow for any conclusive evidence of predictive biomarkers, the observed changes warrant further examination of autoantibody repertoires in larger patient cohorts at risk of developing irAEs during their course of treatment. In summary, dose escalation of IL BCG followed by ipilimumab therapy was not well tolerated in advanced melanoma patients and showed no evidence of clinical benefit. Measuring autoantibody responses may provide early means for identifying patients at risk from developing severe irAEs during cancer immunotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Melanoma/terapia , Mycobacterium bovis/imunologia , Neoplasias Cutâneas/terapia , Adulto , Idoso , Autoanticorpos/sangue , Antígeno CTLA-4/imunologia , Terapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias
16.
BMC Res Notes ; 11(1): 156, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482592

RESUMO

OBJECTIVE: Protein microarrays provide a high-throughput platform to measure protein interactions and associated functions, and can aid in the discovery of cancer biomarkers. The resulting protein microarray data can however be subject to systematic bias and noise, thus requiring a robust data processing, normalization and analysis pipeline to ensure high quality and robust results. To date, a comprehensive data processing pipeline is yet to be developed. Furthermore, a lack of analysis consistency is evident amongst different research groups, thereby impeding collaborative data consolidation and comparison. Thus, we sought to develop an accessible data processing tool using methods that are generalizable to the protein microarray field and which can be adapted to individual array layouts with minimal software engineering expertise. RESULTS: We developed an improved version of a previously developed pipeline of protein microarray data processing and implemented it as an open source software tool, with particular focus on widening its use and applicability. The Protein Microarray Analyser software presented here includes the following tools: (1) neighbourhood background correction, (2) net intensity correction, (3) user-defined noise threshold, (4) user-defined CV threshold amongst replicates and (5) assay controls, (6) composite 'pin-to-pin' normalization amongst sub-arrays, and (7) 'array-to-array' normalization amongst whole arrays.


Assuntos
Análise Serial de Proteínas/métodos , Análise Serial de Proteínas/normas , Humanos
17.
PLoS Negl Trop Dis ; 11(11): e0006045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29117212

RESUMO

BACKGROUND: Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. METHODOLOGY: A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. RESULTS: A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). CONCLUSION: These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.


Assuntos
Biomarcadores/análise , Proteoma/análise , Esquistossomose/diagnóstico , Esquistossomose/patologia , Urina/química , Animais , Feminino , Humanos , Masculino , Espectrometria de Massas , Nigéria , Proteínas , Proteômica , Schistosoma haematobium/isolamento & purificação
18.
Oncotarget ; 8(23): 37991-38007, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388542

RESUMO

Various biomarkers have emerged via high throughput omics-based approaches for use in diagnosis, treatment, and monitoring of prostate cancer. Many of these have yet to be demonstrated as having value in routine clinical practice. Moreover, there is a dearth of information on validation of these emerging prostate biomarkers within African cohorts, despite the huge burden and aggressiveness of prostate cancer in men of African descent. This review focusses of the global landmark achievements in prostate cancer proteomics biomarker discovery and the potential for clinical implementation of these biomarkers in Africa. Biomarker validation processes at the preclinical, translational and clinical research level are discussed here, as are the challenges and prospects for the evaluation and use of novel proteomic prostate cancer biomarkers.


Assuntos
Biomarcadores/metabolismo , Espectrometria de Massas/métodos , Neoplasias da Próstata/genética , Proteômica/métodos , África , Humanos , Masculino , Neoplasias da Próstata/diagnóstico
19.
Sci Rep ; 7: 43858, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262820

RESUMO

In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Rifampina/farmacologia , Antibióticos Antituberculose/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/genética , Mycobacterium smegmatis/genética , Peptídeos/metabolismo , Fenótipo , Fatores de Tempo
20.
Proteomics ; 17(6)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28101920

RESUMO

Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.


Assuntos
HIV-1/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteômica/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ontologia Genética , Humanos , Proteoma/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA