Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Cell Dev Biol ; 12: 1445438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239565

RESUMO

Introduction: Marine environments offer a wealth of opportunities to improve understanding and treatment options for cancers, through insights into a range of fields from drug discovery to mechanistic insights. By applying One Health principles the knowledge obtained can benefit both human and animal populations, including marine species suffering from cancer. One such species is green sea turtles (Chelonia mydas), which are under threat from fibropapillomatosis (FP), an epizootic tumor disease (animal epidemic) that continues to spread and increase in prevalence globally. In order to effectively address this epizootic, a more thorough understanding is required of the prevalence of the disease and the approaches to treating afflicted turtles. Methods: To identify knowledge gaps and assess future needs, we conducted a survey of sea turtle FP experts. The survey consisted of 47 questions designed to assess general perceptions of FP, the areas where more information is needed, local FP trends, the disease status, and mitigation needs, and was voluntarily completed by 44 experts across a broad geographic range. Results: Over 70% of respondents both recognized FP as a cancerous panzootic disease, and reported that FP is increasing in prevalence. They report several factors contributing to this increase. Nearly all of the respondents reported that FP research, patient treatment and rehabilitation required more funding in their area, and reported inadequate facilities and capacity for dealing with FP patients. Treatment approaches varied: just over 70% of the medical experts that responded surgically remove FP tumors, either using laser or scalpel. Just under half of respondents use anti-cancer drugs in their treatment of FP. Internal tumors were reported as justification for euthanasia by 61.5% of respondents, and 30.8% reported severe external tumors to be sufficient grounds for euthanasia. Most medical respondents (93.3%) routinely perform necropsy on deceased or euthanized FP-afflicted turtles. Over 80% of respondents considered large-scale multidisciplinary collaboration 'extremely important' for advancing the field of FP research. Discussion: The survey responses provide a valuable insight into the current status of FP in sea turtles, FP treatment, rehabilitation and research, and help to identify critical FP-related areas most in need of attention.

2.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433209

RESUMO

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pericitos , Humanos , Becaplermina/farmacologia , Endotelina-1/farmacologia , Adenosina , Proliferação de Células
4.
Front Immunol ; 12: 630988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717164

RESUMO

Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.


Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologia
5.
Immunol Cell Biol ; 99(7): 711-723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33667023

RESUMO

Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.


Assuntos
Neoplasias Faciais , Marsupiais , Vacinas , Animais , Neoplasias Faciais/terapia , Humanos , Imunoterapia , Vacinação
6.
Commun Biol ; 4(1): 152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526843

RESUMO

Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFß and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.


Assuntos
Biomarcadores Tumorais , Proliferação de Células , Recidiva Local de Neoplasia/veterinária , Papiloma/veterinária , Neoplasias Cutâneas/veterinária , Infecções Tumorais por Vírus/veterinária , Tartarugas , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Imuno-Histoquímica , Papiloma/genética , Papiloma/metabolismo , Papiloma/cirurgia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/cirurgia , Transcriptoma , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/cirurgia
7.
Diabetologia ; 62(9): 1647-1652, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280340

RESUMO

AIMS/HYPOTHESIS: Variants in CREBRF (rs12513649 and rs373863828) have been strongly associated with increased BMI and decreased risk of type 2 diabetes in Polynesian populations; the A allele at rs373863828 is common in Polynesians but rare in most other global populations. The aim of the present study was to assess the association of CREBRF variants with obesity and diabetes in Pacific Islander (largely Marianas and Micronesian) populations from Guam and Saipan. METHODS: CREBRF rs12513649 and rs373863828 were genotyped in 2022 participants in a community-based cross-sectional study designed to identify determinants of diabetes and end-stage renal disease (ESRD). Associations were analysed with adjustment for age, sex, ESRD and the first four genetic principal components from a genome-wide association study (to account for population stratification); a genomic control procedure was used to account for residual stratification. RESULTS: The G allele at rs12513649 had an overall frequency of 7.7%, which varied from 2.2% to 20.7% across different Marianas and Micronesian populations; overall frequency of the A allele at rs373863828 was 4.2% (range: 1.1-5.4%). The G allele at rs12513649 was associated with higher BMI (ß = 1.55 kg/m2 per copy; p = 0.0026) as was the A allele at rs373863828 (ß = 1.48 kg/m2, p = 0.033). The same alleles were associated with lower risk of diabetes (OR per copy: 0.63 [p = 0.0063] and 0.49 [p = 0.0022], respectively). Meta-analyses combining the current results with previous results in Polynesians showed a strong association between the A allele at rs373863828 and BMI (ß = 1.38 kg/m2; p = 2.5 × 10-29) and diabetes (OR 0.65, p = 1.5 × 10-13). CONCLUSIONS/INTERPRETATION: These results confirm the associations of CREBRF variants with higher BMI and lower risk of diabetes and, importantly, they suggest that these variants contribute to the risk of obesity and diabetes in Oceanic populations.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Proteínas Supressoras de Tumor/genética , Alelos , Índice de Massa Corporal , Estudos Transversais , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Guam , Haplótipos , Humanos , Falência Renal Crônica/genética , Masculino , Havaiano Nativo ou Outro Ilhéu do Pacífico , Obesidade/genética
8.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227640

RESUMO

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Assuntos
Ceramidas/biossíntese , Ácidos Graxos Dessaturases/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Feminino , Genótipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
9.
Sci Rep ; 7(1): 17778, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259341

RESUMO

The HOXB13 G84E variant is associated with risk of prostate cancer (PCa), however the role this variant plays in PCa development is unknown. This study examined 751 cases, 450 relatives and 355 controls to determine the contribution of this variant to PCa risk in Tasmania and investigated HOXB13 gene and protein expression in tumours from nine G84E heterozygote variant and 13 wild-type carriers. Quantitative PCR and immunohistochemistry showed that HOXB13 gene and protein expression did not differ between tumour samples from variant and wild-type carriers. Allele-specific transcription revealed that two of seven G84E carriers transcribed both the variant and wild-type allele, while five carriers transcribed the wild-type allele. Methylation of surrounding CpG sites was lower in the variant compared to the wild-type allele, however overall methylation across the region was very low. Notably, tumour characteristics were less aggressive in the two variant carriers that transcribed the variant allele compared to the five that did not. This study has shown that HOXB13 expression does not differ between tumour tissue of G84E variant carriers and non-carriers. Intriguingly, the G84E variant allele was rarely transcribed in carriers, suggesting that HOXB13 expression may be driven by the wild-type allele in the majority of carriers.


Assuntos
Expressão Gênica/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Proteínas de Homeodomínio/genética , Neoplasias da Próstata/genética , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Metilação de DNA/genética , Formaldeído/farmacologia , Genótipo , Heterozigoto , Humanos , Masculino , Inclusão em Parafina/métodos , Fatores de Risco , Tasmânia , Transcrição Gênica/genética
10.
Front Immunol ; 8: 513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515726

RESUMO

Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.

12.
Oncol Rep ; 33(1): 25-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351806

RESUMO

Telomere length has a biological link to cancer, with excessive telomere shortening leading to genetic instability and resultant malignant transformation. Telomere length is heritable and genetic variants determining telomere length have been identified. Telomere biology has been implicated in the development of hematological malignancies (HMs), therefore, closer examination of telomere length in HMs may provide further insight into genetic etiology of disease development and support for telomere length as a prognostic factor in HMs. We retrospectively examined mean relative telomere length in the Tasmanian Familial Hematological Malignancies Study using a quantitative PCR method on genomic DNA from peripheral blood samples. Fifty-five familial HM cases, 191 unaffected relatives of familial HM cases and 75 non-familial HM cases were compared with 758 population controls. Variance components modeling was employed to identify factors influencing variation in telomere length. Overall, HM cases had shorter mean relative telomere length (p=2.9×10-6) and this was observed across both familial and non-familial HM cases (p=2.2x10-4 and 2.2x10-5, respectively) as well as additional subgroupings of HM cases according to broad subtypes. Mean relative telomere length was also significantly heritable (62.6%; p=4.7x10-5) in the HM families in the present study. We present new evidence of significantly shorter mean relative telomere length in both familial and non-familial HM cases from the same population adding further support to the potential use of telomere length as a prognostic factor in HMs. Whether telomere shortening is the cause of or the result of HMs is yet to be determined, but as telomere length was found to be highly heritable in our HM families this suggests that genetics driving the variation in telomere length is related to HM disease risk.


Assuntos
Neoplasias Hematológicas/genética , Encurtamento do Telômero , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Tasmânia , Adulto Jovem
13.
BMC Cancer ; 14: 808, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25369795

RESUMO

BACKGROUND: Radiotherapy is a chosen treatment option for prostate cancer patients and while some tumours respond well, up to 50% of patients may experience tumour recurrence. Identification of functionally relevant predictive biomarkers for radioresponse in prostate cancer would enable radioresistant patients to be directed to more appropriate treatment options, avoiding the side-effects of radiotherapy. METHODS: Using an in vitro model to screen for novel biomarkers of radioresistance, transcriptome analysis of a radioresistant (PC-3) and radiosensitive (LNCaP) prostate cancer cell line was performed. Following pathway analysis candidate genes were validated using qRT-PCR. The DNA repair pathway in radioresistant PC-3 cells was then targeted for radiation sensitization using the PARP inhibitor, niacinimide. RESULTS: Opposing regulation of a DNA repair and replication pathway was observed between PC-3 and LNCaP cells from RNA-seq analysis. Candidate genes BRCA1, RAD51, FANCG, MCM7, CDC6 and ORC1 were identified as being significantly differentially regulated post-irradiation. qRT-PCR validation confirmed BRCA1, RAD51 and FANCG as being significantly differentially regulated at 24 hours post radiotherapy (p-value =0.003, 0.045 and 0.003 respectively). While the radiosensitive LNCaP cells down-regulated BRCA1, FANCG and RAD51, the radioresistant PC-3 cell line up-regulated these candidates to promote cell survival post-radiotherapy and a similar trend was observed for MCM7, CDC6 and ORC1. Inhibition of DNA repair using niacinamide sensitised the radioresistant cells to irradiation, reducing cell survival at 2 Gy from 66% to 44.3% (p-value =0.02). CONCLUSIONS: These findings suggest that the DNA repair candidates identified via RNA-seq hold potential as both targets for radiation sensitization and predictive biomarkers in prostate cancer.


Assuntos
Biomarcadores Tumorais/genética , Reparo do DNA/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Niacinamida/farmacologia , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem/genética , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Mensageiro/análise , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Radiossensibilizantes/uso terapêutico , Regulação para Cima/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA