Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 5506, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420454

RESUMO

The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Archaea/enzimologia , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , Translocação Genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Quebras de DNA de Cadeia Dupla , DNA Arqueal/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
2.
Nucleic Acids Res ; 40(7): 3183-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22135300

RESUMO

Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.


Assuntos
Proteínas Arqueais/química , DNA Helicases/química , Desoxirribonucleases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sequência Conservada , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/metabolismo , Desoxirribonucleases/metabolismo , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribonuclease H/química , Sulfolobus solfataricus/enzimologia
3.
J Pathol ; 225(2): 181-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21898876

RESUMO

Stem cells accumulate mitochondrial DNA (mtDNA) mutations resulting in an observable respiratory chain defect in their progeny, allowing the mapping of stem cell fate. There is considerable uncertainty in prostate epithelial biology where both basal and luminal stem cells have been described, and in this study the clonal relationships within the human prostate epithelial cell layers were explored by tracing stem cell fate. Fresh-frozen and formalin-fixed histologically-benign prostate samples from 35 patients were studied using sequential cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) enzyme histochemistry and COX subunit I immunofluorescence to identify areas of respiratory chain deficiency; mtDNA mutations were identified by whole mitochondrial genome sequencing of laser-captured areas. We demonstrated that cells with respiratory chain defects due to somatic mtDNA point mutations were present in prostate epithelia and clonally expand in acini. Lineage tracing revealed distinct patterning of stem cell fate with mtDNA mutations spreading throughout the whole acinus or, more commonly, present as mosaic acinar defects. This suggests that individual acini are typically generated from multiple stem cells, and the presence of whole COX-deficient acini suggests that a single stem cell can also generate an entire branching acinar subunit of the gland. Significantly, a common clonal origin for basal, luminal and neuroendocrine cells is demonstrated, helping to resolve a key area of debate in human prostate stem cell biology.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Próstata/citologia , Células-Tronco/citologia , Células Clonais , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Microdissecção
4.
Proc Natl Acad Sci U S A ; 107(52): 22582-6, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21149728

RESUMO

Approximately half the human genome is composed of repetitive DNA sequences classified into microsatellites, minisatellites, tandem repeats, and dispersed repeats. These repetitive sequences have coevolved within the genome but little is known about their potential interactions. Trinucleotide repeats (TNRs) are a subclass of microsatellites that are implicated in human disease. Expansion of CAG·CTG TNRs is responsible for Huntington disease, myotonic dystrophy, and a number of spinocerebellar ataxias. In yeast DNA double-strand break (DSB) formation has been proposed to be associated with instability and chromosome fragility at these sites and replication fork reversal (RFR) to be involved either in promoting or in preventing instability. However, the molecular basis for chromosome fragility of repetitive DNA remains poorly understood. Here we show that a CAG·CTG TNR array stimulates instability at a 275-bp tandem repeat located 6.3 kb away on the Escherichia coli chromosome. Remarkably, this stimulation is independent of both DNA double-strand break repair (DSBR) and RFR but is dependent on a functional mismatch repair (MMR) system. Our results provide a demonstration, in a simple model system, that MMR at one type of repetitive DNA has the potential to influence the stability of another. Furthermore, the mechanism of this stimulation places a limit on the universality of DSBR or RFR models of instability and chromosome fragility at CAG·CTG TNR sequences. Instead, our data suggest that explanations of chromosome fragility should encompass the possibility of chromosome gaps formed during MMR.


Assuntos
Cromossomos Bacterianos/genética , Reparo do DNA , Escherichia coli/genética , Instabilidade de Microssatélites , Sequências de Repetição em Tandem/genética , Repetições de Trinucleotídeos/genética , Sequência de Bases , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/genética , Humanos , Modelos Genéticos , Recombinação Genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Mol Cell ; 39(1): 59-70, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603075

RESUMO

Survival and genome stability are critical characteristics of healthy cells. DNA palindromes pose a threat to genome stability and have been shown to participate in a reaction leading to the formation of inverted chromosome duplications centered around themselves. There is considerable interest in the mechanism of this rearrangement given its likely contribution to genome instability in cancer cells. This study shows that formation of large inverted chromosome duplications can be observed in the chromosome of Escherichia coli. They are formed at the site of a 246 bp interrupted DNA palindrome in the absence of the hairpin nuclease SbcCD and the recombination protein RecA. The genetic requirements for this spontaneous rearrangement are consistent with a pathway involving DNA degradation and hairpin formation, as opposed to a cruciform cleavage pathway. Accordingly, the formation of palindrome-dependent hairpin intermediates can be induced by an adjacent DNA double-stand break.


Assuntos
Cromossomos Bacterianos/metabolismo , Desoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Exonucleases/metabolismo , Rearranjo Gênico , Sequências Repetidas Invertidas/genética , Recombinases Rec A/metabolismo , Pareamento de Bases/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/genética , Microscopia , Modelos Biológicos , Recombinação Genética/genética
6.
Methods Mol Biol ; 628: 227-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238085

RESUMO

The ability to detect mitochondrial DNA (mtDNA) variation within human cells is important not only to identify mutations causing mtDNA disease, but also as mtDNA mutations are being increasingly described in many ageing tissues and in complex diseases such as diabetes, neurodegeneration and cancer. In this review, we discuss the main molecular genetic techniques that can be applied to study the two main types of mtDNA mutation: point mutations and large-scale mtDNA rearrangements. We then describe in detail protocols routinely used within our laboratory to analyse mtDNA mutations in individual human cells such as single muscle fibres and individual neurons to study the relationship between mtDNA mutation load and respiratory chain dysfunction.


Assuntos
DNA Mitocondrial/análise , Técnicas Genéticas , Envelhecimento/genética , Humanos , Mitocôndrias/genética , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA