Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 254(5): 575-588, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33987838

RESUMO

Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Líquido Amniótico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Anormalidades Urogenitais/metabolismo , Refluxo Vesicoureteral/metabolismo , Animais , Feminino , Feto , Humanos , Masculino , Camundongos , Proteoma , Proteômica , Peixe-Zebra
2.
Proc Natl Acad Sci U S A ; 115(42): E9812-E9821, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30282743

RESUMO

The ability of cells to collectively interpret surrounding environmental signals underpins their capacity to coordinate their migration in various contexts, including embryonic development and cancer metastasis. One tractable model for studying collective migration is the parapineal, a left-sided group of neurons that arises from bilaterally positioned precursors that undergo a collective migration to the left side of the brain. In zebrafish, the migration of these cells requires Fgf8 and, in this study, we resolve how FGF signaling correlates with-and impacts the migratory dynamics of-the parapineal cell collective. The temporal and spatial dynamics of an FGF reporter transgene reveal that FGF signaling is activated in only few parapineal cells usually located at the leading edge of the parapineal during its migration. Overexpressing a constitutively active Fgf receptor compromises parapineal migration in wild-type embryos, while it partially restores both parapineal migration and mosaic expression of the FGF reporter transgene in fgf8-/- mutant embryos. Focal activation of FGF signaling in few parapineal cells is sufficient to promote the migration of the whole parapineal collective. Finally, we show that asymmetric Nodal signaling contributes to the restriction and leftwards bias of FGF pathway activation. Our data indicate that the first overt morphological asymmetry in the zebrafish brain is promoted by FGF pathway activation in cells that lead the collective migration of the parapineal to the left. This study shows that cell-state differences in FGF signaling in front versus rear cells is required to promote migration in a model of FGF-dependent collective migration.


Assuntos
Padronização Corporal , Movimento Celular , Embrião não Mamífero/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Lateralidade Funcional , Glândula Pineal/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/fisiologia , Embrião não Mamífero/citologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Glândula Pineal/citologia , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
3.
Elife ; 72018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29952749

RESUMO

Pitx2c, a homeodomain transcription factor, is classically known for its left-right patterning role. However, an early wave of pitx2 expression occurs at the onset of gastrulation in several species, indicating a possible earlier role that remains relatively unexplored. Here we show that in zebrafish, maternal-zygotic (MZ) pitx2c mutants exhibit a shortened body axis indicative of convergence and extension (CE) defects. Live imaging reveals that MZpitx2c mutants display less persistent mesendodermal migration during late stages of gastrulation. Transplant data indicate that Pitx2c functions cell non-autonomously to regulate this cell behavior by modulating cell shape and protrusive activity. Using transcriptomic analyses and candidate gene approaches, we identify transcriptional changes in components of the chemokine-ECM-integrin dependent mesendodermal migration network. Together, our results define pathways downstream of Pitx2c that are required during early embryogenesis and reveal novel functions for Pitx2c as a regulator of morphogenesis.


Assuntos
Movimento Celular/genética , Desenvolvimento Embrionário/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Forma Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Embrião não Mamífero , Endoderma/citologia , Endoderma/metabolismo , Células Epiteliais/citologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Gastrulação/genética , Integrinas/genética , Integrinas/metabolismo , Mutação , Notocorda/citologia , Notocorda/metabolismo , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
4.
Mol Cell Neurosci ; 33(2): 180-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16949838

RESUMO

In this report, we present a study of regeneration of the lateral line, a collection of mechano-sensory organ, in the adult zebrafish caudal fin. As all neuromasts are innervated by axon fibers, neuronal regeneration is a key issue in the regenerating process. We first show that support cells from the last neuromast adjacent to the amputation plane divide and migrate to colonize the blastema in order to reform the missing part of the lateral line. We then show that nerve re-growth takes place later than neuromast progenitor cell migration. We also provide evidence that new growth cones form at the amputation plane and subsequently follow the migrating placode-like structure to re-innervate regenerated neuromasts as they differentiate. Altogether, our observations indicate that caudal lateral line regeneration is not a mere recapitulation of the ontogenic process.


Assuntos
Modelos Animais , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Peixe-Zebra/fisiologia , Estruturas Animais/citologia , Estruturas Animais/inervação , Estruturas Animais/fisiologia , Animais , Biomarcadores , Divisão Celular/fisiologia
5.
Gene Expr Patterns ; 6(8): 777-82, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16516559

RESUMO

Here, we report the cloning of a cDNA encoding zebrafish ER81, a member of the PEA3 family of Ets transcription factors. Strikingly, the spatial and temporal expression of er81 is significantly different from its Xenopus orthologue, XER81, whose expression is more reminiscent of the FGF dependant zebrafish PEA3 family members. In keeping with this observation, while pea3, erm and XER81 require FGF activity for their expression, er81 does not require FGF signalling. Our results suggest that, since the vertebrate specific expansion of the PEA3 subfamily of Ets transcription factors, the regulation of PEA3 genes has been independently modified during the evolution of different vertebrate lineages.


Assuntos
Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas Proto-Oncogênicas c-ets/genética , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
6.
Dev Dyn ; 234(4): 1016-25, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16245342

RESUMO

Normal motility of the zebrafish embryo requires a large number of gene loci, many of which have human orthologues implicated in myasthenias and other myopathies. We have identified a mutation in the zebrafish that abolishes body motility. Embryos have narrower myofibrils and lack clusters of nicotinic acetylcholine receptors (nAChRs) on the surface of the somitic muscle. We mapped the mutation to the delta-subunit of the nAChR, showing this mutant to be a new allele of the previously named sofa potato (sop). The mutant allele carries a missense mutation in the extracellular domain altering the cysteine at position 150 to an arginine. The delta-subunit is expressed in all striated muscles in embryonic and early larval stages together with the alpha1, beta1, epsilon, and gamma-subunits of nAChR. In contrast to mammals that show switching from the gamma embryonic to the adult epsilon-subunit, the two subunits are coexpressed in zebrafish embryos. We, furthermore, demonstrated that the sop/delta-nAChR mutation is a suppressor of the myopathy caused by lack of Dystrophin. The myofiber detachment phenotype of Dystroglycan-deficient embryos was not suppressed, suggesting that Dystrophin and Dystroglycan play distinct roles in muscle formation and maintenance of muscle integrity.


Assuntos
Distrofina/deficiência , Movimento/fisiologia , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto/genética , Receptores Nicotínicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Clonagem Molecular , Primers do DNA , Imunofluorescência , Gástrula/citologia , Imuno-Histoquímica , Hibridização In Situ , Músculo Esquelético/patologia , Receptores Nicotínicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
Gene Expr Patterns ; 4(1): 53-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14678828

RESUMO

We describe the isolation of zebrafish growth factor independent 1 (gfi1) and present an analysis of its pattern of expression during early development. As with its murine homologue, gfi1 expression is detected in the ganglion cells of the neural retina and in developing hair cells of the ear. In keeping with a role in the development of sensory hair cells, gfi1 is also expressed in neuromasts of the anterior and posterior lateral line system. Finally, gfi1 is expressed in the developing epithalamus in the dorsal diencephalon where its transcription is restricted to the parapineal.


Assuntos
Proteínas de Ligação a DNA/genética , Epitálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândula Pineal/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Epitálamo/embriologia , Hibridização In Situ , Dados de Sequência Molecular , Glândula Pineal/embriologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
8.
Dev Biol ; 252(1): 1-14, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12453456

RESUMO

The floor plate is an organising centre that controls neural differentiation and axonogenesis in the neural tube. The axon guidance molecule Netrin1 is expressed in the floor plate of zebrafish embryos. To elucidate the regulatory mechanisms underlying expression in the floor plate, we scanned the netrin1 locus for regulatory regions and identified an enhancer that drives expression in the floor plate and hypochord of transgenic embryos. The expression of the transgene is ectopically activated by Cyclops (Nodal) signals but does not respond to Hedgehog signals. The winged-helix transcription factor foxA2 (also HNF3beta, axial) is expressed in the notochord and floor plate. We show that knock-down of FoxA2 leads to loss of floor plate, while notochord and hypochord development is unaffected, suggesting a specific requirement of FoxA2 in the floor plate. The transgene is ectopically activated by FoxA2, and expression of FoxA2 leads to rescue of floor plate differentiation in mutant embryos that are deficient in Cyclops signalling. Zebrafish and mouse use different signalling systems to specify floor plate. The zebrafish netrin1 regulatory region also drives expression in the floor plate of mouse and chicken embryos. This suggests that components of the regulatory circuits controlling expression in the floor plate are conserved and that FoxA2-given its importance for midline development also in the mouse-may be one such component.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Fatores de Crescimento Neural/genética , Sistema Nervoso/embriologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Clonagem Molecular , Primers do DNA , Fator 3-beta Nuclear de Hepatócito , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Camundongos , Microinjeções , Netrina-1 , Proteínas Supressoras de Tumor , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA