Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474751

RESUMO

Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors ß1 (total and activated) and ß4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated ß1 and ß4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin ß1 and ß4 expression and inducing the mesenchymal-epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy.


Assuntos
Isotiocianatos , Sulfóxidos , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Cisplatino , Gencitabina , Vimentina , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Caderinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapêutico
2.
J Ethnopharmacol ; 319(Pt 3): 117298, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrapleura tetraptera (Schumach. and Thonn.) Taub. (Fabaceae) is a tropical plant that is used in Cameroon pharmacopeia for the treatment of many cancers including prostate cancer (PCa), which is a major cause of men's death worldwide. The objective of this study was to evaluate the anticancer properties as well as underlying mechanisms of isolates from T. tetraptera on DU145, PC3 and LNCaP cancer cell lines. MATERIALS AND METHODS: Eight (8) compounds were purified from T. tetraptera stem bark extract through silica gel column chromatography (CC) and characterized using spectroscopic techniques (1D and 2D NMR), HRESIMS. Cell growth was assessed by a well-characterized MTT assay, while BrdU and clonogenicity assays provided information on the cell proliferation index. Further, the impact of the compounds on cell cycle progression and cell death were performed through Flow cytometry. Cell adhesion, cell migration and chemotaxis along with some proteins of epithelial-mesenchymal transition (EMT) were assayed. RESULTS: Out of the eight (1-8) isolates from T. tetraptera only oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin showed potent cell growth arrest with an estimated CC50 of 15, 23, 16 and 17, 26, 16 µg/mL on DU145, PC3 and LNCaP cells, respectively. A 15% (DU145) and 25% (LNCaP) increase in apoptotic cells induced by oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 10 µg/mL were noticed. Oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 2.5 and 10 µg/mL reduced the number of cells in S-phase and raised cells in G2/M phase. At the same concentrations, they decreased the number of invading DU145 cells and increased the adherence of DU145 cells to fibronectin and collagen matrix at tested concentrations, accompanied by an increase in integrin ß-1 (10 µg/mL) and integrin ß-4 (2.5 µg/mL) expression. Furthermore, a down-regulation of pcdk1, cdk2, Bcl-2, N-Cad, vimentin and cytokeratine 8-18 was noticed while, p19, p27, p53 pAKT, Bax, caspase-3 and E-Cad were up-regulated. CONCLUSIONS: This study outlines for the first time, the anticancer ability of compounds oleanane-3-O-ß-D-glucoside-2'-acetamide (4) and aridanin (6) from Tetrapleura tetraptera and proposes their putative mechanisms of action.


Assuntos
Fabaceae , Neoplasias da Próstata , Tetrapleura , Masculino , Humanos , Tetrapleura/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Integrinas , Apoptose , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835543

RESUMO

Extracts of European mistletoe (Viscum album) are popular as a complementary treatment for patients with many different cancer types. However, whether these extracts actually block bladder cancer progression remains unknown. The influence of different mistletoe extracts on bladder cancer cell growth and proliferation was investigated by exposing RT112, UMUC3, and TCCSup cells to mistletoe from hawthorn (Crataegi), lime trees (Tiliae), willow trees (Salicis), or poplar trees (Populi). The tumor cell growth and proliferation, apoptosis induction, and cell cycle progression were then evaluated. Alterations in integrin α and ß subtype expression as well as CD44 standard (CD44s) and CD44 variant (CD44v) expressions were evaluated. Cell cycle-regulating proteins (CDK1 and 2, Cyclin A and B) were also investigated. Blocking and knock-down studies served to correlate protein alterations with cell growth. All extracts significantly down-regulated the growth and proliferation of all bladder cancer cell lines, most strongly in RT112 and UMUC3 cells. Alterations in CD44 expression were not homogeneous but rather depended on the extract and the cell line. Integrin α3 was, likewise, differently modified. Integrin α5 was diminished in RT112 and UMUC3 cells (significantly) and TCCSup (trend) by Populi and Salicis. Populi and Salicis arrested UMUC3 in G0/G1 to a similar extent, whereas apoptosis was induced most efficiently by Salicis. Examination of cell cycle-regulating proteins revealed down-regulation of CDK1 and 2 and Cyclin A by Salicis but down-regulation of CDK2 and Cyclin A by Populi. Blocking and knock-down studies pointed to the influence of integrin α5, CD44, and the Cyclin-CDK axis in regulating bladder cancer growth. Mistletoe extracts do block bladder cancer growth in vitro, with the molecular action differing according to the cell line and the host tree of the mistletoe. Integrating mistletoe into a guideline-based treatment regimen might optimize bladder cancer therapy.

4.
Environ Toxicol ; 38(9): 2069-2083, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310102

RESUMO

Despite enormous progress in modern medicine, prostate cancer (PCa) remains a major public health problem due to its high incidence and mortality. Although studies have shown in vitro antitumor effects of cucurbitacins from Cucumis sativus, the in vivo anticancer effect of the seed oil as a whole, has yet to be demonstrated. The present study evaluated the in vitro anticancer mechanisms of C. sativus (CS) seed oil and its possible chemopreventive potential on benzo(a)pyrene (BaP)-induced PCa in Wistar rat. In vitro cell growth, clone formation, cell death mechanism, cell adhesion and migration as well as expression of integrins ß-1 and ß-4 were assessed. In vivo PCa was induced in 56 male rats versus 8 normal control rats, randomized in normal (NOR) and negative (BaP) control groups which, received distilled water; the positive control group (Caso) was treated with casodex (13.5 mg/kg BW). One group received the total seed extract at the dose of 500 mg/kg BW; while the remaining three groups were treated with CS seed oil at 42.5, 85, and 170 mg/kg BW. The endpoints were: morphologically (prostate tumor weight and volume), biochemically (total protein, prostate specific antigen (PSA), oxidative stress markers such as MDA, GSH, catalase, and SOD) and histologically. As results, CS seed oil significantly and concentration-dependently reduced the DU145 prostate cancer cell growth and clone formation (optimum = 100 µg/mL). It slightly increased the number of apoptotic cells and inhibited the migration and invasion of DU145 cells, while it decreased their adhesion to immobilized collagen and fibrinogen. The expression of integrin ß-1 and ß-4 was increased in presence of 100 µg/mL CS oil. In vivo, the BaP significantly elevated the incidence of PC tumors (75%), the total protein and PSA levels, pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) and MDA levels compared to NOR. CS seeds oil significantly counteracted the effect of BaP by decreasing significantly the PC incidence (12.5%), and increasing the level of antioxidant (SOD, GSH, and catalase) and anti-inflammatory cytokine IL-10 in serum. While in BaP group PCa adenocarninoma was the most representative neoplasm, rats treated with 85 and 170 mg/kg prevented it in the light of the casodex. It is conclude that CS may provide tumor suppressive effects in vitro and in vivo which makes it an interesting candidate to support the current treatment protocol.


Assuntos
Cucumis sativus , Cucurbitaceae , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Benzo(a)pireno/toxicidade , Catalase , Cucumis sativus/metabolismo , Antígeno Prostático Específico/uso terapêutico , Cucurbitaceae/metabolismo , Ratos Wistar , Citocinas/metabolismo , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle , Superóxido Dismutase , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico
5.
World J Urol ; 41(8): 2077-2090, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36183289

RESUMO

PURPOSE: Focal therapy (FT) is gaining increasing acceptance in the management of localized prostate cancer particularly due to its favorable safety. Preliminary evidence suggests advantageous utilization of local treatment in the field of oligometastatic prostate cancer (OMPC). Since data on the utilization of FT in OMPC are scarce, we sought to summarize available evidence. METHODS: For this narrative comprehensive review, we employed PubMed®, Web of Science™, Embase®, Scopus®, and clinicaltrial.gov databases and Google web search engine to seek peer-reviewed articles, published abstracts from international congresses, and ongoing trials in the English language using the terms "prostate cancer", "oligometastatic", "hormone-sensitive", "focal therapy", "focal treatment", "cryotherapy", "ablation", "cancer" as well as "metastasis-directed therapy. We focused on relevant publications on FT utilized in OMPC targeting the primary or metastatic sites as well as completed and ongoing clinical trials. RESULTS: Growing evidence points to distinct differences in the biologic behavior and molecular signaling processes of OMPC as compared to polymetastatic disease (PMPC). No established biomarkers are available to accurately identify OMPC yet, while several candidates are currently under investigation. The evolution of molecular imaging is set to aid in selecting patients benefitting most from local management. Differences between OMPC and PMPC should be considered when designing the optimal therapeutic strategy. While efficacy data for FT in comparison to standard care in OMPC are scarce, longer progression-free survival and time to castration resistance have been demonstrated for bone metastatic prostate cancer with the primary tumor treated by cryosurgery followed by androgen deprivation therapy (ADT) compared to ADT alone. CONCLUSION: Ongoing research efforts are eagerly awaited to better characterize OMPC and establish customized strategies for patients with this condition.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232303

RESUMO

Combined cisplatin-gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK-cyclin axis and the Akt-mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt-mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Desoxicitidina/análogos & derivados , Humanos , Isotiocianatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Gencitabina
7.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230567

RESUMO

Chronic treatment of renal cell carcinoma (RCC) with the tyrosine kinase inhibitor sunitinib (ST) inevitably induces resistance and tumor re-activation. This study investigated whether adding the natural compound sulforaphane (SFN) with its anti-cancer properties could improve ST efficacy in vitro. The RCC cell lines A498, Caki1, KTCTL26, and 786O were exposed to ST, SFN, or both (dual therapy, DT) before (short-term exposure) and during ST-resistance buildup (long-term 8-week exposure). Tumor growth, proliferation, and clone formation were evaluated, as was cell cycle progression and cell cycle regulating proteins. In nonresistant cells (short-term), DT induced a higher reduction in cell viability in three cell lines as compared to monotherapy with either ST or SFN. Long-term SFN or DT significantly reduced tumor growth and proliferation, whereas ST alone had no effect or even elevated proliferation in three cell lines. SFN or DT (but not ST alone) also blocked clonogenic growth. Both long-term SFN and DT enhanced the number of cells in the S- and/or G2/M-phase. Protein analysis in 786O cells revealed a down-regulation of cyclin dependent kinase (CDK) 1 and 2. CDK2 or Cyclin A knockdown caused reduced 786O growth activity. SFN therefore inhibits or delays resistance to chronic ST treatment.

8.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230603

RESUMO

Combined cisplatin-gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK-cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.

9.
Cancers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35804883

RESUMO

Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin ß1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin ß1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin's value as an antitumor drug.

10.
Cancers (Basel) ; 14(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35626034

RESUMO

Integrin receptors contribute to hepatocellular carcinoma (HCC) invasion, while AKT-mTOR signaling controls mitosis. The present study was designed to explore the links between integrins and the AKT-mTOR pathway and the CDK-Cyclin axis. HCC cell lines (HepG2, Huh7, Hep3B) were stimulated with soluble collagen or Matrigel to activate integrins, or with insulin-like growth factor 1 (IGF1) to activate AKT-mTOR. HCC growth, proliferation, adhesion, and chemotaxis were evaluated. AKT/mTOR-related proteins, proteins of the CDK-Cyclin axis, focal adhesion kinase (FAK), and integrin-linked kinase (ILK) were determined following IGF1-stimulation or integrin knockdown. Stimulation with collagen or Matrigel increased tumor cell growth and proliferation. This was associated with significant alteration of the integrins α2, αV, and ß1. Blockade of these integrins led to cell cycle arrest in G2/M and diminished the number of tumor cell clones. Knocking down the integrins α2 or ß1 suppressed ILK, reduced FAK-phosphorylation and diminished AKT/mTOR, as well as the proteins of the CDK-Cyclin axis. Activating the cells with IGF1 enhanced the expression of the integrins α2, αV, ß1, activated FAK, and increased tumor cell adhesion and chemotaxis. Blocking the AKT pathway canceled the enhancing effect of IGF on the integrins α2 and ß1. These findings reveal that HCC growth, proliferation, and invasion are controlled by a fine-tuned network between α2/ß1-FAK signaling, the AKT-mTOR pathway, and the CDK-Cyclin axis. Concerted blockade of the integrin α2/ß1 complex along with AKT-mTOR signaling could, therefore, provide an option to prevent progressive dissemination of HCC.

11.
Cancers (Basel) ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406455

RESUMO

Whereas the lack of biomarkers in penile cancer (PeCa) impedes the development of efficacious treatment protocols, preliminary evidence suggests that c-MET and associated signaling elements may be dysregulated in this disorder. In the following study, we investigated whether c-MET and associated key molecular elements may have prognostic and therapeutic utility in PeCa. Formalin-fixed, paraffin-embedded tumor tissue from therapy-naïve patients with invasive PeCa was used for tissue microarray (TMA) analysis. Immunohistochemical staining was performed to determine the expression of the proteins c-MET, PPARg, ß-catenin, snail, survivin, and n-MYC. In total, 94 PeCa patients with available tumor tissue were included. The median age was 64.9 years. High-grade tumors were present in 23.4%, and high-risk HPV was detected in 25.5%. The median follow-up was 32.5 months. High expression of snail was associated with HPV-positive tumors. Expression of ß-catenin was inversely associated with grading. In both univariate COX regression analysis and the log-rank test, an increased expression of PPARg and c-MET was predictive of inferior disease-specific survival (DSS). Moreover, in multivariate analysis, a higher expression of c-MET was independently associated with worse DSS. Blocking c-MET with cabozantinib and tivantinib induced a significant decrease in viability in the primary PeCa cell line UKF-PeC3 isolated from the tumor tissue as well as in cisplatin- and osimertinib-resistant sublines. Strikingly, a higher sensitivity to tivantinib could be detected in the latter, pointing to the promising option of utilizing this agent in the second-line treatment setting.

12.
Nutrients ; 14(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057550

RESUMO

Bladder cancer patients whose tumors develop resistance to cisplatin-based chemotherapy often turn to natural, plant-derived products. Beneficial effects have been particularly ascribed to polyphenols, although their therapeutic relevance when resistance has developed is not clear. The present study evaluated the anti-tumor potential of polyphenol-rich olive mill wastewater (OMWW) on chemo-sensitive and cisplatin- and gemcitabine-resistant T24, RT112, and TCCSUP bladder cancer cells in vitro. The cells were treated with different dilutions of OMWW, and tumor growth and clone formation were evaluated. Possible mechanisms of action were investigated by evaluating cell cycle phases and cell cycle-regulating proteins. OMWW profoundly inhibited the growth and proliferation of chemo-sensitive as well as gemcitabine- and cisplatin-resistant bladder cancer cells. Depending on the cell line and on gemcitabine- or cisplatin-resistance, OMWW induced cell cycle arrest at different phases. These differing phase arrests were accompanied by differing alterations in the CDK-cyclin axis. Considerable suppression of the Akt-mTOR pathway by OMWW was observed in all three cell lines. Since OMWW blocks the cell cycle through the manipulation of the cyclin-CDK axis and the deactivation of Akt-mTOR signaling, OMWW could become relevant in supporting bladder cancer therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Olea/química , Polifenóis/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Águas Residuárias/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Polifenóis/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Gencitabina
13.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053528

RESUMO

Insulin-like growth factor-1 (IGF-1)-related signaling is associated with prostate cancer progression. Links were explored between IGF-1 and expression of integrin adhesion receptors to evaluate relevance for growth and migration. Androgen-resistant PC3 and DU145 and androgen-sensitive LNCaP and VCaP prostate cancer cells were stimulated with IGF-1 and tumor growth (all cell lines), adhesion and chemotaxis (PC3, DU145) were determined. Evaluation of Akt/mTOR-related proteins, focal adhesion kinase (FAK) and integrin α and ß subtype expression followed. Akt knock-down was used to investigate its influence on integrin expression, while FAK blockade served to evaluate its influence on mTOR signaling. Integrin knock-down served to investigate its influence on tumor growth and chemotaxis. Stimulation with IGF-1 activated growth in PC3, DU145, and VCaP cells, and altered adhesion and chemotactic properties of DU145 and PC3 cells. This was associated with time-dependent alterations of the integrins α3, α5, αV, and ß1, FAK phosphorylation and Akt/mTOR signaling. Integrin blockade or integrin knock-down in DU145 and PC3 cells altered tumor growth, adhesion, and chemotaxis. Akt knock-down (DU145 cells) cancelled the effect of IGF-1 on α3, α5, and αV integrins, whereas FAK blockade cancelled the effect of IGF-1 on mTOR signaling (DU145 cells). Prostate cancer growth and invasion are thus controlled by a fine-tuned network between IGF-1 driven integrin-FAK signaling and the Akt-mTOR pathway. Concerted targeting of integrin subtypes along with Akt-mTOR signaling could, therefore, open options to prevent progressive dissemination of prostate cancer.

14.
Biomedicines ; 9(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34829859

RESUMO

Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors predominate as first-line therapy options for renal cell carcinoma. When first-line TKI therapy fails due to resistance development, an optimal second-line therapy has not yet been established. The present investigation is directed towards comparing the anti-angiogenic properties of the TKIs, sorafenib and axitinib on human endothelial cells (HUVECs) with acquired resistance towards the TKI sunitinib. HUVECs were driven to resistance by continuously exposing them to sunitinib for six weeks. They were then switched to a 24 h or further six weeks treatment with sorafenib or axitinib. HUVEC growth, as well as angiogenesis (tube formation and scratch wound assay), were evaluated. Cell cycle proteins of the CDK-cyclin axis (CDK1 and 2, total and phosphorylated, cyclin A and B) and the mTOR pathway (AKT, total and phosphorylated) were also assessed. Axitinib (but not sorafenib) significantly suppressed growth of sunitinib-resistant HUVECs when they were exposed for six weeks. This axinitib-associated growth reduction was accompanied by a cell cycle block at the G0/G1-phase. Both axitinib and sorafenib reduced HUVEC tube length and prevented wound closure (sorafenib > axitinib) when applied to sunitinib-resistant HUVECs for six weeks. Protein analysis revealed diminished phosphorylation of CDK1, CDK2 and pAKT, accompanied by a suppression of cyclin A and B. Both drugs modulated CDK-cyclin and AKT-dependent signaling, associated either with both HUVEC growth and angiogenesis (axitinib) or angiogenesis alone (sorafenib). Axitinib and sorafenib may be equally applicable as second line treatment options, following sunitinib resistance.

15.
Biology (Basel) ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34681106

RESUMO

The serum level of soluble (s)E-cadherin is elevated in several malignancies, including prostate cancer (PCa). This study was designed to investigate the effects of sE-cadherin on the behavior of PCa cells in vitro, with the aim of identifying a potential therapeutic target. Growth as well as adhesive and motile behavior were evaluated in PC3, DU-145, and LNCaP cells. Flow cytometry was used to assess cell cycle phases and the surface expression of CD44 variants as well as α and ß integrins. Confocal microscopy was utilized to visualize the distribution of CD44 variants within the cells. Western blot was applied to investigate expression of α3 and ß1 integrins as well as cytoskeletal and adhesion proteins. Cell growth was significantly inhibited after exposure to 5 µg/mL sE-cadherin and was accompanied by a G0/G1-phase arrest. Adhesion of cells to collagen and fibronectin was mitigated, while motility was augmented. CD44v4, v5, and v7 expression was elevated while α3 and ß1 integrins were attenuated. Blocking integrin α3 reduced cell growth and adhesion to collagen but increased motility. sE-cadherin therefore appears to foster invasive tumor cell behavior, and targeting it might serve as a novel and innovative concept to treat advanced PCa.

16.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576132

RESUMO

Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and metastasis in vitro. DU145 and PC3 cells were incubated with low-dosed curcumin (0.1-0.4 µg/mL) and subsequently irradiated with 1.65 J/cm2 visible light for 5 min. Controls remained untreated and/or non-irradiated. Cell growth, proliferation, apoptosis, adhesion, and chemotaxis were evaluated, as was cell cycle regulating protein expression (CDK, Cyclins), and integrins of the α- and ß-family. Curcumin or light alone did not cause any significant effects on tumor growth, proliferation, or metastasis. However, curcumin combined with light irradiation significantly suppressed tumor growth, adhesion, and migration. Phosphorylation of CDK1 decreased and expression of the counter-receptors cyclin A and B was diminished. Integrin α and ß subtypes were also reduced, compared to controls. Irradiation distinctly enhances the anti-tumor potential of curcumin in vitro and may hold promise in treating prostate cancer.


Assuntos
Curcumina/farmacologia , Luz , Neoplasias da Próstata/patologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Clonais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Metástase Neoplásica
17.
Mol Cell Endocrinol ; 535: 111382, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216643

RESUMO

The expression of Carbonic-anhydrase IX (CAIX) in thyroid cancer (TC) subtypes was determined and its role in cancer cell growth and tumor-initiating cells (TICs) investigated. Immunohistochemistry in 114 TC patients revealed that CAIX expression was increased in tumor specimens of papillary, follicular and anaplastic TCs compared to normal thyroid tissue. Clinicopathological data indicated that lymph node metastases were more frequent in patients with high CAIX expression. The Cancer Genome Atlas database analysis demonstrated that a strong CAIX-mRNA expression was associated with advanced tumor stages and poor survival in TCs. In TC cell lines, CAIX expression was elevated in tumorspheres compared to monolayer cultures and was associated with an increased expression of stemness markers. Genetic knockdown or pharmacological inhibition of CAIX suppressed cell proliferation and the TIC ability to form tumorspheres by an induction of apoptosis and cell-cycle arrest. These findings suggest CAIX as a potential prognostic marker and a therapeutic target for thyroid cancer.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Glândula Tireoide/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Análise de Sobrevida , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/mortalidade , Regulação para Cima
18.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073079

RESUMO

Sulforaphane (SFN) is a natural glucosinolate found in cruciferous vegetables that acts as a chemopreventive agent, but its mechanism of action is not clear. Due to antioxidative mechanisms being thought central in preventing cancer progression, SFN could play a role in oxidative processes. Since redox imbalance with increased levels of reactive oxygen species (ROS) is involved in the initiation and progression of bladder cancer, this mechanism might be involved when chemoresistance occurs. This review summarizes current understanding regarding the influence of SFN on ROS and ROS-related pathways and appraises a possible role of SFN in bladder cancer treatment.


Assuntos
Anticarcinógenos , Antioxidantes , Carcinoma/tratamento farmacológico , Isotiocianatos , Sulfóxidos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos/farmacologia , Sulfóxidos/uso terapêutico
19.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218199

RESUMO

Prostate cancer patients whose tumors develop resistance to conventional treatment often turn to natural, plant-derived products, one of which is sulforaphane (SFN). This study was designed to determine whether anti-tumor properties of SFN, identified in other tumor entities, are also evident in cultivated DU145 and PC3 prostate cancer cells. The cells were incubated with SFN (1-20 µM) and tumor cell growth and proliferative activity were evaluated. Having found a considerable anti-growth, anti-proliferative, and anti-clonogenic influence of SFN on both prostate cancer cell lines, further investigation into possible mechanisms of action were performed by evaluating the cell cycle phases and cell-cycle-regulating proteins. SFN induced a cell cycle arrest at the S- and G2/M-phase in both DU145 and PC3 cells. Elevation of histone H3 and H4 acetylation was also evident in both cell lines following SFN exposure. However, alterations occurring in the Cdk-cyclin axis, modification of the p19 and p27 proteins and changes in CD44v4, v5, and v7 expression because of SFN exposure differed in the two cell lines. SFN, therefore, does exert anti-tumor properties on these two prostate cancer cell lines by histone acetylation and altering the intracellular signaling cascade, but not through the same molecular mechanisms.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Receptores de Hialuronatos/metabolismo , Isotiocianatos/farmacologia , Acetilação/efeitos dos fármacos , Anticarcinógenos/farmacologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoformas de Proteínas/metabolismo , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
20.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759798

RESUMO

Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteristics of bladder carcinoma cells exposed to everolimus combined with the isothiocyanate sulforaphane (SFN), which has been shown to exert cancer inhibiting properties. RT112, UMUC3, or TCCSUP bladder carcinoma cells were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM), alone or in combination. Adhesion and chemotaxis along with profiling details of CD44 receptor variants (v) and integrin α and ß subtypes were evaluated. The functional impact of CD44 and integrins was explored by blocking studies and siRNA knock-down. Long-term exposure to everolimus enhanced chemotactic activity, whereas long-term exposure to SFN or the SFN-everolimus combination diminished chemotaxis. CD44v4 and v7 increased on RT112 cells following exposure to SFN or SFN-everolimus. Up-regulation of the integrins α6, αV, and ß1 and down-regulation of ß4 that was present with everolimus alone could be prevented by combining SFN and everolimus. Down-regulation of αV, ß1, and ß4 reduced chemotactic activity, whereas knock-down of CD44 correlated with enhanced chemotaxis. SFN could, therefore, inhibit resistance-related tumor dissemination during everolimus-based bladder cancer treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Isotiocianatos/farmacologia , Proteínas de Neoplasias/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Everolimo/efeitos adversos , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Sulfóxidos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA