Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 317, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609440

RESUMO

Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Insulina/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Modelos Animais de Doenças , Neurônios/metabolismo , MicroRNAs/genética
2.
Cell Chem Biol ; 27(3): 292-305.e6, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017918

RESUMO

Hsp90 plays an important role in health and is a therapeutic target for managing misfolding disease. Compounds that disrupt co-chaperone delivery of clients to Hsp90 target a subset of Hsp90 activities, thereby minimizing the toxicity of pan-Hsp90 inhibitors. Here, we have identified SEW04784 as a first-in-class inhibitor of the Aha1-stimulated Hsp90 ATPase activity without inhibiting basal Hsp90 ATPase. Nuclear magnetic resonance analysis reveals that SEW84 binds to the C-terminal domain of Aha1 to weaken its asymmetric binding to Hsp90. Consistent with this observation, SEW84 blocks Aha1-dependent Hsp90 chaperoning activities, including the in vitro and in vivo refolding of firefly luciferase, and the transcriptional activity of the androgen receptor in cell-based models of prostate cancer and promotes the clearance of phosphorylated tau in cellular and tissue models of neurodegenerative tauopathy. We propose that SEW84 provides a novel lead scaffold for developing therapeutic approaches to treat proteostatic disease.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Estrutura Molecular , Dobramento de Proteína/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
3.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167373

RESUMO

Clinical studies show a significant association of childhood adversities and FK506-binding protein 5 (FKBP5) polymorphisms on increasing the susceptibility for neuropsychiatric disorders. However, the mechanisms by which early life stress (ELS) influences FKBP5 actions have not been fully elucidated. We hypothesized that interactions between ELS and high FKBP5 induce phenotypic changes that correspond to underlying molecular changes in the brain. To test this, we exposed newborn mice overexpressing human FKBP5 in the forebrain, rTgFKBP5, to ELS using a maternal separation. Two months after ELS, we observed that ELS increased anxiety levels, specifically in mice overexpressing FKBP5, an effect that was more pronounced in females. Biochemically, Protein kinase B (AKT) phosphorylation was reduced in the dorsal hippocampus in rTgFKBP5 mice, which demonstrates that significant molecular changes occur as a result of ELS when FKBP5 levels are altered. Taken together, our results have a significant impact on our understanding mechanisms underlying the gene x environment interaction showing that anxiety and AKT signaling in the hippocampus were affected by the combination of ELS and FKBP5. An increased knowledge of the molecular mechanisms underlying these interactions may help determine if FKBP5 could be an effective target for the treatment of anxiety and other mood-related illnesses.


Assuntos
Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/metabolismo , Hipocampo/metabolismo , Acontecimentos que Mudam a Vida , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Psicológico , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Ansiedade , Transtornos de Ansiedade/diagnóstico , Comportamento Animal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Genótipo , Hipocampo/fisiopatologia , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Avaliação de Sintomas , Proteínas de Ligação a Tacrolimo/genética
4.
EMBO J ; 35(14): 1537-49, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27261198

RESUMO

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Proteínas tau/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , alfa-Sinucleína/metabolismo
5.
PLoS One ; 7(4): e35566, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563386

RESUMO

MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB). Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Piridínio/química , Tamoxifeno/farmacologia , Tiazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/toxicidade , Receptor alfa de Estrogênio/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Piridínio/toxicidade , Tiazóis/toxicidade
6.
J Neurosci ; 30(46): 15374-82, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084594

RESUMO

Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.


Assuntos
Proteínas de Choque Térmico HSP27/fisiologia , Simulação de Dinâmica Molecular , Plasticidade Neuronal/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia
7.
J Biol Chem ; 285(4): 2498-505, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19889640

RESUMO

Members of the 70-kDa heat shock family can control and manipulate a host of oncogenic client proteins. This role of Hsp70 in both the folding and degradation of these client proteins makes it a potential drug target for certain forms of cancer. The phenothiazine family of compounds, as well as the flavonoid myricetin, was recently shown to inhibit Hsp70-ATPase activity, whereas members of the dihydropyrimidine family stimulated ATPase function. Akt, a major survival kinase, was found to be under the regulation of Hsp70, and when the ATPase activity of Hsp70 was increased or decreased by these compounds, Akt levels were also increased or decreased. Also, increasing Hsp70 levels concurrent with inhibition of its ATPase function synergistically reduced Akt levels to a greater extent than either manipulation alone, providing new insights about client fate decisions. Akt reductions mediated by Hsp70 inhibitors were prevented when Hsp70 expression was silenced with small interfering RNA. Inhibiting Hsp70 ATPase function produced cytotoxic events only in breast cancer cell lines where Akt dysfunction was previously shown, suggesting therapeutic specificity depending on the Hsp70 client profile. Thus, increasing Hsp70 levels combined with inhibiting its ATPase function may serve to dramatically reduce Akt levels and facilitate cell death in certain types of cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Morte Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Humanos , Fenotiazinas/farmacologia , RNA Interferente Pequeno , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA