Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

3.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

4.
Exp Hematol ; 98: 53-62.e3, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689800

RESUMO

Mitochondria not only are essential for cell metabolism and energy supply but are also engaged in calcium homeostasis and reactive oxygen species generation and play a key role in apoptosis. As a consequence, functional mitochondrial disorders are involved in many human cancers including acute myeloid leukemia (AML). However, very few data are available on the deregulation of their number and/or shape in leukemic cells, despite the evident link between ultrastructure and function. In this context, we analyzed the ultrastructural mitochondrial parameters (number per cell, mitochondria area, number of cristae/mitochondria, cristal thickness) in five leukemia cell lines (HEL, HL60, K562, KG1, and OCI-AML3) together with the functional assay of their respiratory profile. First, we describe significant differences in basal respiration, maximal respiration, ATP production, and spare respiratory capacity between our cell lines, confirming the various respiratory profiles among leukemia subtypes. Second, we highlight that these variations are obviously associated with significant interleukemia heterogeneity of the number and/or shape of mitochondria. For instance, KG1, characterized by the smallest number of mitochondria together with reduced cristal diameter, had a particularly deficient respiratory profile. In comparison, the HEL and K562 cell lines, both with high respiratory profiles, harbored the largest number of mitochondria/cells with high cristal diameters. Moreover, we report that K562, carrying the ASXL1 mutation, presents significant mitochondria-endoplasmic reticulum deficiency reflected by decreases in the numbers of matrix granules and mitochondria-associated endoplasmic reticulum membrane (MAM) and mitochondrial-derived vesicle (MDV) precursors, which are implicated in the regulatory pathways of cell mortality via the processes of mitophagy and calcium homeostasis. Contrarily, HL60 carried high levels of matrix granules and MAMs and had a higher sensitivity to drugs targeting mitochondria (rotenone/antimycin). We confirm the implication of ASXL1 mutation in this mitochondria dysregulation through the study of transcript expression (from 415 patients with public data) involved in three mitochondrial pathways: (1) endoplasmic reticulum-mitochondria contacts (MAMs), (2) matrix granule homeostasis, and (3) MDV precursor production. Our study offers new and original data on mitochondria structural alterations linked to deregulation of respiration profiles in AMLs and some genetic characteristics, suggesting that modifications of mitochondrial shape and/or number in leukemic cells participate in chemoresistance and could be a targeted mechanism to regulate their proliferative potential.


Assuntos
Leucemia Mieloide Aguda , Mitocôndrias , Proteínas de Neoplasias , Consumo de Oxigênio , Proteínas Repressoras , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
BMC Cancer ; 20(1): 110, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041553

RESUMO

BACKGROUND: TP53 mutations occur in only about 3% of primary and 10-20% of relapse B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). However, alternative mechanisms may contribute to functionally impairing the p53 pathway in the absence of a mutation. Candidate mechanisms include overexpression of p53 mRNA variants encoding either dominant-negative p53 protein isoforms such as Delta40p53 and Delta133p53, or modulatory isoforms such as p53beta, which counteract the effects of Delta133p53 on replicative senescence in T-lymphocytes. METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls). RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls. CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Mutação , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Isoformas de Proteínas/genética , Multimerização Proteica/genética , RNA Mensageiro , Recidiva , Proteína Supressora de Tumor p53/química
6.
J Cachexia Sarcopenia Muscle ; 10(4): 919-928, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31070021

RESUMO

BACKGROUND: Animal studies and clinical data support the interest of citrulline as a promising therapeutic for sarcopenia. Citrulline is known to stimulate muscle protein synthesis, but how it affects energy metabolism to support the highly energy-dependent protein synthesis machinery is poorly understood. METHODS: Here, we used myotubes derived from primary culture of mouse myoblasts to study the effect of citrulline on both energy metabolism and protein synthesis under different limiting conditions. RESULTS: When serum/amino acid deficiency or energy stress (mild uncoupling) were applied, citrulline stimulated muscle protein synthesis by +22% and +11%, respectively. Importantly, this increase was not associated with enhanced energy status (ATP/ADP ratio) or mitochondrial respiration. We further analysed the share of mitochondrial respiration and thus of generated ATP allocated to different metabolic pathways by using specific inhibitors. Our results indicate that addition of citrulline allocated an increased share of mitochondrially generated ATP to the protein synthesis machinery under conditions of both serum/amino acid deficiency (+28%) and energy stress (+21%). This reallocation was not because of reduced ATP supply to DNA synthesis or activities of sodium and calcium cycling ion pumps. CONCLUSIONS: Under certain stress conditions, citrulline increases muscle protein synthesis by specifically reallocating mitochondrial fuel to the protein synthesis machinery. Because ATP/ADP ratios and thus Gibbs free energy of ATP hydrolysis remained globally constant, this reallocation may be linked to decreased activation energies of one or several ATP (and GTP)-consuming reactions involved in muscle protein synthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Citrulina/uso terapêutico , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Citrulina/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA