Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 12(2): 97-111, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724000

RESUMO

Premature birth is a leading cause of childhood morbidity and mortality and often followed by an arrest of postnatal lung development called bronchopulmonary dysplasia. Therapies using exogenous mesenchymal stromal cells (MSC) have proven highly efficacious in term-born rodent models of this disease, but effects of MSC in actual premature-born lungs are largely unknown. Here, we investigated thirteen non-human primates (baboons; Papio spp.) that were born at the limit of viability and given a single, intravenous dose of ten million human umbilical cord tissue-derived MSC per kilogram or placebo immediately after birth. Following two weeks of human-equivalent neonatal intensive care including mechanical ventilation, lung function testing and echocardiographic studies, lung tissues were analyzed using unbiased stereology. We noted that therapy with MSC was feasible, safe and without signs of engraftment when administered as controlled infusion over 15 minutes, but linked to adverse events when given faster. Administration of cells was associated with improved cardiovascular stability, but neither benefited lung structure, nor lung function after two weeks of extrauterine life. We concluded that a single, intravenous administration of MSC had no short- to mid-term lung-protective effects in extremely premature-born baboons, sharply contrasting data from term-born rodent models of arrested postnatal lung development and urging for investigations on the mechanisms of cell-based therapies for diseases of prematurity in actual premature organisms.


Assuntos
Displasia Broncopulmonar , Células-Tronco Mesenquimais , Recém-Nascido , Animais , Humanos , Pulmão , Displasia Broncopulmonar/terapia , Recém-Nascido Prematuro , Primatas
2.
J Pediatr ; 256: 105-112.e4, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528055

RESUMO

OBJECTIVE: To determine whether weight gain velocity (g/kg/day) 30 days after the initiation of feeds after cardiac surgery and other clinical outcomes improve in infants with single ventricle physiology fed an exclusive human milk diet compared with a mixed human and bovine diet. STUDY DESIGN: In this multicenter, randomized, single blinded, controlled trial, term neonates 7 days of age or younger with single ventricle physiology and anticipated cardiac surgical palliation within 30 days of birth were enrolled at 10 US centers. Both groups received human milk if fed preoperatively. During the 30 days after feeds were started postoperatively, infants in the intervention group received human milk fortified once enteral intake reached 60 mL/kg/day with a human milk-based fortifier designed for term neonates. The control group received standard fortification with formula once enteral intake reached 100 mL/kg/day. Perioperative feeding and parenteral nutrition study algorithms were followed. RESULTS: We enrolled 107 neonates (exclusive human milk = 55, control = 52). Baseline demographics and characteristics were similar between the groups. The median weight gain velocity at study completion was higher in exclusive human milk vs control group (12 g/day [IQR, 5-18 g/day] vs 8 g/day [IQR, 0.4-14 g/day], respectively; P = .03). Other growth measures were similar between groups. Necrotizing enterocolitis of all Bell stages was higher in the control group (15.4 % vs 3.6%, respectively; P = .04). The incidence of other major morbidities, surgical complications, length of hospital stay, and hospital mortality were similar between the groups. CONCLUSIONS: Neonates with single ventricle physiology have improved short-term growth and decreased risk of NEC when receiving an exclusive human milk diet after stage 1 surgical palliation. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov (www. CLINICALTRIALS: gov, Trial ID: NCT02860702).


Assuntos
Enterocolite Necrosante , Leite Humano , Lactente , Recém-Nascido , Humanos , Animais , Bovinos , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Dieta , Enterocolite Necrosante/epidemiologia , Aumento de Peso
3.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136598

RESUMO

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Assuntos
Displasia Broncopulmonar , Disfunção Cognitiva , Hiperóxia , Nascimento Prematuro , Recém-Nascido , Feminino , Camundongos , Humanos , Animais , Hiperóxia/complicações , Hiperóxia/metabolismo , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Neurogênese , Disfunção Cognitiva/etiologia , Cognição , Pulmão/metabolismo
4.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943016

RESUMO

Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1-P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.

5.
Breastfeed Med ; 11: 133-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26982282

RESUMO

OBJECTIVE: Infants may benefit from early nutritional intervention to decrease hospital stay. To evaluate the effects of adding a human milk (HM)-derived cream (Cream) product to a standard feeding regimen in preterm infants. MATERIALS AND METHODS: In a prospective multicenter randomized study, infants with birth weights 750-1,250 g were assigned to a Control or Cream group. The Control group received a standard feeding regimen consisting of mother's own milk or donor HM with donor HM-derived fortifier. The Cream group received the standard feeding regimen along with an additional HM-derived cream supplement when the HM they received was <20 kcal/oz. Primary outcomes of this secondary analysis included comorbidities, length of stay (LOS), and postmenstrual age (PMA) at discharge. RESULTS: We enrolled 75 infants (Control n = 37, Cream n = 38) with gestational age 27.7 ± 1.8 weeks and birth weight 973 ± 145 g (mean ± SD). After adjusting for gestational age, birth weight, and presence of bronchopulmonary dysplasia (BPD), the Cream group had a decreased PMA at discharge (39.9 ± 4.8 versus 38.2 ± 2.7 weeks, p = 0.03) and LOS (86 ± 39 versus 74 ± 22 days, p = 0.05). For 21 infants with BPD, these values trended toward significance for PMA at discharge (44.2 ± 6.1 versus 41.3 ± 2.7 weeks, p = 0.08) and LOS (121 ± 49 versus 104 ± 23 days, p = 0.08). CONCLUSIONS: Very preterm infants who received an HM-derived cream supplement were discharged earlier. Infants with BPD may have benefited the most.


Assuntos
Suplementos Nutricionais , Alimentos Fortificados , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Recém-Nascido de muito Baixo Peso , Tempo de Internação , Leite Humano , Displasia Broncopulmonar , Desenvolvimento Infantil , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Modelos Lineares , Masculino , Análise Multivariada , Estudos Prospectivos
6.
Am J Physiol Gastrointest Liver Physiol ; 309(3): G171-80, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26045614

RESUMO

Human milk contains biologically important amounts of transforming growth factor-ß2 isoform (TGF-ß2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-ß2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-ß bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-ß2 (rTGF-ß2) to milk prior to feeding. Milk-borne TGF-ß bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-ß2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-ß2 (20-40 nM) to human preterm milk samples failed to increase TGF-ß bioactivity in milk. Milk-borne TGF-ß2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-ß2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-ß2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.


Assuntos
Condroitinases e Condroitina Liases/metabolismo , Enterocolite Necrosante , Leite Humano , Fator de Crescimento Transformador beta2/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Disponibilidade Biológica , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/prevenção & controle , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Ativação de Macrófagos/fisiologia , Camundongos , Leite Humano/enzimologia , Leite Humano/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/metabolismo
7.
Endocrinology ; 156(3): 813-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25560831

RESUMO

Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.


Assuntos
Glucose/metabolismo , Resistência à Insulina/fisiologia , Papio/metabolismo , Nascimento Prematuro , Transdução de Sinais/fisiologia , Insuficiência Vertebrobasilar/metabolismo , Animais , Glicemia , Feminino , Regulação da Expressão Gênica , Glucagon , Técnica Clamp de Glucose , Músculo Esquelético/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
8.
Breastfeed Med ; 8(6): 496-502, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23869537

RESUMO

OBJECTIVE: This study compared cytokines (in particular transforming growth factor [TGF]-ß2) and lactoferrin in maternal human milk (MHM), human-derived milk fortifier (HDMF), and donor human milk (DHM). MATERIALS AND METHODS: MHM was randomly collected from breastfeeding mothers who had no infectious illness at the time of milk expression. HDMF and DHM were products derived from human milk processed by Holder pasteurization. MHM samples were collected at different times (early/late) and gestations (preterm/term). Lactoferrin was analyzed by western blotting, and cytokines were quantified using commercial enzyme-linked immunosorbent assays. Significance was determined using analysis of variance. RESULTS: In the 164 samples analyzed, TGF-ß2 concentrations in HDMF and preterm MHM (at all collection times) were fivefold higher than in DHM (p<0.05). Early preterm MHM had levels of interleukin (IL)-10 and IL-18, 11-fold higher than DHM (p<0.05). IL-6 in DHM was 0.3% of the content found in MHM. IL-18 was fourfold higher in early MHM versus late MHM regardless of gestational age (p<0.05). Lactoferrin concentration in DHM was 6% of that found in MHM. CONCLUSIONS: Pasteurization decreases concentrations of most cytokines and lactoferrin in DHM. TGF-ß2, a protective intestinal cytokine, has comparable concentrations in HDMF to MHM despite pasteurization.


Assuntos
Aleitamento Materno , Interleucina-10/análise , Interleucina-18/análise , Interleucina-6/análise , Lactoferrina/análise , Leite Humano/imunologia , Fator de Crescimento Transformador beta2/análise , Adulto , Análise de Variância , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Alimentos Fortificados/análise , Humanos , Recém-Nascido , Bancos de Leite Humano , Leite Humano/química , Pasteurização , Gravidez
9.
Am J Physiol Gastrointest Liver Physiol ; 304(2): G167-80, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154975

RESUMO

Preterm infants may be at risk of necrotizing enterocolitis (NEC) due to deficiency of transforming growth factor-ß 2 (TGF-ß(2)) in the developing intestine. We hypothesized that low epithelial TGF-ß(2) expression in preterm intestine and during NEC results from diminished autocrine induction of TGF-ß(2) in these cells. Premature baboons delivered at 67% gestation were treated per current norms for human preterm infants. NEC was diagnosed by clinical and radiological findings. Inflammatory cytokines, TGF-ß(2), Smad7, Ski, and strawberry notch N (SnoN)/Ski-like oncoprotein (SKIL) was measured using quantitative reverse transcriptase-polymerase chain reaction, immunoblots, and immunohistochemistry. Smad7 effects were examined in transfected IEC6 intestinal epithelial cells in vitro. Findings were validated in archived human tissue samples of NEC. NEC was recorded in seven premature baboons. Consistent with existing human data, premature baboon intestine expressed less TGF-ß(2) than term intestine. TGF-ß(2) expression was regulated in epithelial cells in an autocrine fashion, which was interrupted in the premature intestine and during NEC due to increased expression of Smad7. LPS increased Smad7 binding to the TGF-ß(2) promoter and was associated with dimethylation of the lysine H3K9, a marker of transcriptional silencing, on the nucleosome of TGF-ß(2). Increased Smad7 expression in preterm intestine was correlated with the deficiency of SnoN/SKIL, a repressor of the Smad7 promoter. Smad7 inhibits autocrine expression of TGF-ß(2) in intestinal epithelial cells in the normal premature intestine and during NEC. Increased Smad7 expression in the developing intestine may be due to a developmental deficiency of the SnoN/SKIL oncoprotein.


Assuntos
Comunicação Autócrina , Colo/metabolismo , Enterocolite Necrosante/metabolismo , Mucosa Intestinal/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Western Blotting , Linhagem Celular , Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Enterocolite Necrosante/genética , Enterocolite Necrosante/patologia , Idade Gestacional , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Papio anubis , Papio cynocephalus , Nascimento Prematuro , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad7/genética , Transfecção , Fator de Crescimento Transformador beta2/genética
10.
Endocrinology ; 151(5): 1990-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20233798

RESUMO

Hyperglycemia, a prevalent condition in premature infants, is thought to be a consequence of incomplete suppression of endogenous glucose production and reduced insulin-stimulated glucose disposal in peripheral tissues. However, the molecular basis for these conditions remains unclear. To test the hypothesis that the insulin transduction pathway is underdeveloped with prematurity, fetal baboons were delivered, anesthetized, and euthanized at 125 d gestational age (GA), 140 d GA, or near term at 175 d GA. Vastus lateralis muscle and liver tissues were obtained, and protein content of insulin signaling molecules [insulin receptor (IR)-beta, IR substate-1, p85 subunit of phosphatidylinositol 3-kinase, Akt, and AS160] and glucose transporters (GLUT)-1 and GLUT4 was measured by Western blotting. Muscle from 125 d GA baboons had markedly reduced GLUT1 protein content (16% of 140 d GA and 9% of 175 d GA fetuses). GLUT4 and AS160 also were severely reduced in 125 d GA fetal muscle (43% of 175 d GA and 35% of 175 d GA, respectively). In contrast, the protein content of IR-beta, IR substate-1, and Akt was elevated by 1.7-, 5.2-, and 1.9-fold, respectively, in muscle from 125 d GA baboons when compared with 175 d GA fetuses. No differences were found in the content of insulin signaling proteins in liver. In conclusion, significant gestational differences exist in the protein content of several insulin signaling proteins in the muscle of fetal baboons. Reduced muscle content of key glucose transport-regulating proteins (GLUT1, GLUT4, AS160) could play a role in the pathogenesis of neonatal hyperglycemia and reduced insulin-stimulated glucose disposal.


Assuntos
Hiperglicemia/fisiopatologia , Insulina/fisiologia , Doenças dos Macacos/fisiopatologia , Transdução de Sinais , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Western Blotting , Modelos Animais de Doenças , Feminino , Idade Gestacional , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/embriologia , Fígado/metabolismo , Masculino , Doenças dos Macacos/sangue , Doenças dos Macacos/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Papio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
11.
Prenat Diagn ; 29(7): 682-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19382114

RESUMO

OBJECTIVE: Delineate prenatal features of Costello syndrome (caused by HRAS mutations), which consists of mental retardation, facial, cardiovascular, skin, and musculoskeletal anomalies, and tumor predisposition. METHODS: Literature and new cases classified as Group I (pre-HRAS), Group II (HRAS confirmed), and Group III (HRAS confirmed in natural history study, plus three contributed cases). RESULTS: Polyhydramnios occurred in most (mean 79%) pregnancies of cases in Groups I (98), II (107), and III (17); advanced paternal age and prematurity were noted in approximately half. Less frequent were nuchal thickening, ascites, shortened long bones, abnormal hand posture, ventriculomegaly, macrosomia, and macrocephaly. Fetal arrhythmia occurred in nine cases (six supraventricular or unspecified tachycardia, one unspecified arrhythmia, and two premature atrial contractions, PACs); excluding three new cases and two with PACs, the estimated prenatal frequency is 4/222 (2%). CONCLUSION: Costello syndrome can be suspected prenatally when polyhydramnios is accompanied by nuchal thickening, hydrops, shortened long bones, abnormal hand posture, ventriculomegaly, large size, and macrocephaly, and especially fetal atrial tachycardia. Consideration should be given for timely prenatal diagnostic studies for confirmative HRAS gene mutations and for maternal treatment of serious fetal arrhythmia.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Taquicardia Atrial Ectópica/diagnóstico por imagem , Ultrassonografia Pré-Natal , Adulto , Feminino , Doenças Fetais/diagnóstico por imagem , Humanos , Recém-Nascido , Masculino , Poli-Hidrâmnios/diagnóstico por imagem , Gravidez , Síndrome , Taquicardia Atrial Ectópica/congênito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA