Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 674643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335572

RESUMO

Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.


Assuntos
Imunidade Inata/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Animais , Antígenos de Bactérias/imunologia , Bovinos , Técnicas de Cocultura , Citocinas/metabolismo , Interferon gama/metabolismo , Macrófagos , Cultura Primária de Células
2.
Vet Microbiol ; 233: 124-132, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31176398

RESUMO

Leptospirosis is a zoonosis, caused by pathogenic spirochetes of the genus Leptospira. Although cattle are usually the maintenance hosts of serovar Hardjo, Pomona is the most frequent serovar circulating in Argentina. The understanding of bovine innate immune response and the virulence of this serovar is important for future control measures. This work compares infection of bovine macrophages with the virulent L. interrogans sv Pomona strain AKRFB (P1) and its attenuated counterpart (P19). First, we confirmed attenuation in the hamster model. Mortality and lung hemorrhages occurred after P1 inoculation, while the survival rate was 100% in P19-infected animals. Cells infected with both strains showed statistically upregulated gene expression of pro-inflammatory cytokines, IL-1ß, IL-6 and TNFα. The level of expression of anti-inflammatory cytokine IL-10 was statistically different between strains. Increased expression of IL-10 was observed only in P1-infected cells. For the first time, we describe macrophages extracellular traps induced by infection of bovine macrophages (bMETs) with both, the virulent and attenuated Leptospira interrogans Pomona strains. P1 was found higher internalized when the phagocytosis was inhibited, suggesting a cell entrance of this strain also by an independent-phagocytosis pathway. Furthermore, P1 was higher colocalized with acidic and late endosomal compartments compared with P19. This data emphasizes the importance to deepen in Leptospira bovine macrophages particular invasion mechanisms and, furthermore, underline the value of studying the main hosts.


Assuntos
Imunidade Inata , Leptospira interrogans serovar pomona/patogenicidade , Macrófagos/imunologia , Macrófagos/microbiologia , Animais , Argentina , Bovinos , Células Cultivadas , Cricetinae , Citocinas/genética , Citocinas/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Leptospirose/imunologia , Pulmão/microbiologia , Pulmão/patologia , Sorogrupo , Virulência
3.
Tuberculosis (Edinb) ; 103: 28-36, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28237031

RESUMO

Globally, about 4.5% of new tuberculosis (TB) cases are multi-drug-resistant (MDR), i.e. resistant to the two most powerful first-line anti-TB drugs. Indeed, 480,000 people developed MDR-TB in 2015 and 190,000 people died because of MDR-TB. The MDR Mycobacterium tuberculosis M family, which belongs to the Haarlem lineage, is highly prosperous in Argentina and capable of building up further drug resistance without impairing its ability to spread. In this study, we sequenced the whole genomes of a highly prosperous M-family strain (Mp) and its contemporary variant, strain 410, which produced only one recorded tuberculosis case in the last two decades. Previous reports have demonstrated that Mp induced dysfunctional CD8+ cytotoxic T cell activity, suggesting that this strain has the ability to evade the immune response against M. tuberculosis. Comparative analysis of Mp and 410 genomes revealed non-synonymous polymorphisms in eleven genes and five intergenic regions with polymorphisms between both strains. Some of these genes and promoter regions are involved in the metabolism of cell wall components, others in drug resistance and a SNP in Rv1861, a gene encoding a putative transglycosylase that produces a truncated protein in Mp. The mutation in Rv3787c, a putative S-adenosyl-l-methionine-dependent methyltransferase, is conserved in all of the other prosperous M strains here analysed and absent in non-prosperous M strains. Remarkably, three polymorphic promoter regions displayed differential transcriptional activity between Mp and 410. We speculate that the observed mutations/polymorphisms are associated with the reported higher capacity of Mp for modulating the host's immune response.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Regiões Promotoras Genéticas , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia
4.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031264

RESUMO

Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.


Assuntos
Lipoproteínas/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Mycobacterium bovis/fisiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Animais , Bovinos , Pontos de Checagem do Ciclo Celular , Expressão Gênica , Células HeLa , Humanos , Lipoproteínas/genética , Viabilidade Microbiana , Mutação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óperon
5.
BMC Microbiol ; 13: 200, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007602

RESUMO

BACKGROUND: Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. RESULTS: We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtΔmce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtΔmce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtΔmce2RComp-containing phagosomes as compared to MtΔmce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. CONCLUSIONS: The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Virulência/biossíntese , Animais , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óperon , Transdução Genética , Tuberculose/microbiologia , Tuberculose/patologia
6.
Virulence ; 2(3): 233-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21543883

RESUMO

Integrity of p27-p55 operon has been demonstrated to be crucial for replication of Mycobacterium tuberculosis, the main agent of human tuberculosis, in the mouse model of infection. However, the individual contribution of each gene of the operon for the virulence of pathogenic Mycobacterium spp. still remains unclear. The operon is formed by two genes, p27 and p55. p27 gene encodes a lipoprotein that binds triacylated glycolipids and modulates the host immune responses by inhibiting the MHC-II Ag processing. Besides, p55 encodes an efflux pump that, together with P27, is involved in resistance to drugs. In this study, we evaluated the individual contribution of P27 and P55 to the virulence of Mycobacterium bovis, the etiological agent for bovine tuberculosis. Knockout mutation of p27-p55 operon in M. bovis severely decreased the virulence of the bacteria when assessed in a progressive model of pulmonary tuberculosis in Balb/c mice. In addition, the mutant strain showed poor replication in a murine macrophagic cell line. Virulence and intracellular replication were only restored when the mutant strain was complemented with a copy of the whole operon. The reintroduction of p55 into the mutant strain partially restored the virulence of the bacteria while no complementation was achieved with p27 individual gene. 


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Lipoproteínas/genética , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Viabilidade Microbiana , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia , Animais , Bovinos , Linhagem Celular , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Teste de Complementação Genética , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Óperon , Tuberculose Bovina/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA