Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431671

RESUMO

The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.

2.
iScience ; 23(4): 101022, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32283525

RESUMO

Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling.

3.
Int J Dev Biol ; 62(4-5): 311-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29877570

RESUMO

Understanding the dynamic cellular behaviours driving morphogenesis and regeneration is a long-standing challenge in biology. Live imaging, together with genetically encoded reporters, may provide the necessary tool to address this issue, permitting the in vivo monitoring of the spatial and temporal expression dynamics of a gene of interest during a variety of developmental processes. Canonical Wnt/ß-catenin signalling controls a plethora of cellular activities during development, regeneration and adulthood throughout the animal kingdom. Several reporters have been produced in animal models to reveal sites of active Wnt signalling. In order to monitor in vivo Wnt/ß-catenin signalling activity in the freshwater polyp Hydra vulgaris, we generated a ß-cat-eGFP transgenic Hydra, in which eGFP is driven by the Hydra ß-catenin promoter. We characterized the expression dynamics during budding, regeneration and chemical activation of the Wnt/ß-cat signalling pathway using light sheet fluorescence microscopy. Live imaging of the ß-cat-eGFP lines recapitulated the previously reported endogenous expression pattern of ß-catenin and revealed the dynamic appearance of novel sites of Wnt/ß-catenin signalling, that earlier evaded detection by mean of in situ hybridization. By combining the Wnt activity read-out efficiency of the ß-catenin promoter with advanced imaging, we have created a novel model system to monitor in real time the activity of Hydra ß-cat regulatory sequences in vivo, and open the path to reveal ß-catenin modulation in many other physiological contexts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hydra/embriologia , Regeneração/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Hydra/genética , Hydra/metabolismo , Microscopia de Fluorescência , Proteínas Wnt/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA