Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(7): 1891-1902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958516

RESUMO

BACKGROUND: The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE: The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS: We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS: P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION: Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.


Assuntos
Trombose , Lesões do Sistema Vascular , Camundongos , Animais , Agregação Plaquetária , Plaquetas/metabolismo , Hemostasia , Trombose/genética , Trombose/prevenção & controle , Trombose/metabolismo , Difosfato de Adenosina/farmacologia , Integrinas/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
2.
J Neurointerv Surg ; 14(2): 179-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34215660

RESUMO

The placement of cervical and intracranial stents requires the administration of antiplatelet drugs to prevent thromboembolic complications. Ticagrelor has emerged as the most widely used alternative in clopidogrel non-responders owing to its potent antiplatelet effects. Because ticagrelor does not require hepatic activation, many neurointerventionalists choose to forgo laboratory testing of platelet inhibition. In rare instances, patients may not achieve adequate platelet inhibition following ticagrelor administration. In this paper we review the mechanism of action of ticagrelor and its use in cerebrovascular procedures. We present two cases of ticagrelor non-responsiveness from two high-volume cerebrovascular centers, discuss their management, and propose an algorithm for managing ticagrelor non-responsiveness.


Assuntos
Inibidores da Agregação Plaquetária , Stents , Algoritmos , Clopidogrel , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA