Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 10(11): 3574-3589, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482887

RESUMO

Autophagy is conservative catabolic process that degrades organelles, in particular, mitochondria, and misfolded proteins within the lysosomes, thus maintaining cellular viability. Despite the close relationship between mitochondrial dysfunction and cellular senescence, it is unclear how mitochondria damage can induce autophagy in senescent cells. We show that MEK/ERK suppression induces mitochondria damage followed by apoptosis of senescent Ras-expressing cells. To understand the role of persistent mTORC1 signaling in breaking the cAMPK-induced autophagy caused by mitochondrial damage, we inhibited mTORС1 with low concentrations of pp242. mTORC1 suppression neither restores the AMPK-induced autophagy nor decreases the level of apoptosis upon MEK/ERK inhibition. We discovered the existence of an alternative autophagy-like way that partially increases the viability of senescent cells under suppressed mTORC1. The pp242-treated cells survive due to formation of the non-autophagous LC3-negative vacuoles, which contain the damaged mitochondria and lysosomes with the following excretion the content from the cell. MEK/ERK activity is required to implement this process in senescent cells. Senescent cells exhibit distinctive spatial distribution of organelles and proteins that provides uncoupling of final participants of autophagy. We show that this feature stops the process of cytoprotective autophagy in response to MEK/ERK suppression, thus allowing selective elimination of senescent Ras-expressing cells.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Senescência Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes ras , Humanos , Indóis/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Purinas/farmacologia , Ratos
2.
Aging (Albany NY) ; 9(11): 2352-2375, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29140794

RESUMO

The Ras-Raf-MEK-ERK pathway plays a central role in tumorigenesis and is a target for anticancer therapy. The successful strategy based on the activation of cell death in Ras-expressing cells is associated with the suppression of kinases involved in Ras pathway. However, activation of cytoprotective autophagy overcomes antiproliferative effect of the inhibitors and develops drug resistance. We studied whether cellular senescence induced by HDAC inhibitor sodium butyrate in E1a+cHa-Ras-transformed rat embryo fibroblasts (ERas) and A549 human Ki-Ras mutated lung adenocarcinoma cells would enhance the tumor suppressor effect of MEK/ERK inhibition. Treatment of control ERas cells with PD0325901 for 24 h results in mitochondria damage and apoptotic death of a part of cellular population. However, the activation of AMPK-dependent autophagy overcomes pro-apoptotic effects of MEK/ERK inhibitor and results in restoration of the mitochondria and rescue of viability. Senescent ERas cells do not develop cytoprotective autophagy upon inhibition of MEK/ERK pathway due to spatial dissociation of lysosomes and autophagosomes in the senescent cells. Senescent cells are unable to form the autophagolysosomes and to remove the damaged mitochondria resulting in apoptotic death. Our data show that suppression of MEK/ERK pathway in senescent cells provides a new strategy for elimination of Ras-expressing cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Senescência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA