Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Vision Res ; 158: 109-119, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825468

RESUMO

Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.


Assuntos
Carotenoides/metabolismo , Visão de Cores/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/genética , Estrigiformes/fisiologia , Transcriptoma/fisiologia , Raios Ultravioleta , Animais , Primers do DNA/química , Expressão Gênica , Visão Noturna/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Visão Ocular/fisiologia , Xantofilas/metabolismo
2.
Acta biol. colomb ; 21(3): 481-494, set.-dic, 2016. ilus
Artigo em Inglês | LILACS | ID: biblio-827626

RESUMO

Dissecting the genetic basis of adaptive traits is key to our understanding of evolutionary processes. A major and essential step in the study of evolutionary genetics is drawing link between genotype and phenotype, which depends on the difficult process of defining the phenotype at different levels, from functional to organismal. Visual pigments are a key component of the visual system and their evolution could also provide important clues on the evolution of visual sensory system in response to sexual and natural selection. As a system in which genotype can be linked to phenotype, I will use visual pigments and color vision, particularly in birds, as a case of a complex phenotype. I aim to emphasize the difficulties in drawing the genotype-phenotype relationship for complex phenotypes and to highlight the challenges of doing so for color vision. The use of vision-based receiver models to quantify animal colors and patterns is increasingly important in many fields of evolutionary research, spanning studies of mate choice, predation, camouflage and sensory ecology. Given these models impact on evolution and ecology, it is important to provide other researchers with the opportunity to better understand animal vision and the corresponding advantages and limitations of these models.


Entender la base genética de los rasgos adaptativos es un paso crítico en el estudio de los procesos evolutivos. Para estudiar la conexión entre genotipo y fenotipo es importante definir el fenotipo a diferentes niveles: desde las proteínas que se construyen con base en un gen, hasta las características finales presentes en un organismo. Las opsinas y los fotopigmentos son elementos primordiales de la visión y entender cómo han evolucionado es fundamental en el estudio de la visión en los animales como un caracter derivado de selección natural o sexual. Este artículo se enfoca en este sistema, en el que se pueden conectar genotipo y fenotipo, como ejemplo de fenotipo complejo para ilustrar las dificultades de establecer una relación clara entre genotipo y fenotipo. Adicionalmente, este artículo tiene como objetivo discutir el funcionamiento del sistema de fotorrecepción, con énfasis particular en las aves, con el fin de enumerar varios factores que deben ser tenidos en cuenta para predecir cambios en la visión a partir del estudio de los fotopigmentos. Dado que los modelos basados en la visión de aves son cada vez más usados en diversas áreas de la biología evolutiva tales como: selección de pareja, depredación y camuflaje; se hace relevante entender los fundamentos y limitaciones de estos modelos. Por esta razón, en este artículo discuto los detalles y aspectos prácticos del uso de los modelos de visión existentes para aves, con el fin de facilitar su uso en futuras investigaciones en diversas áreas de evolución.

3.
Science ; 348(6238): 1040-2, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25953821

RESUMO

In the fruit fly Drosophila, head formation is driven by a single gene, bicoid, which generates head-to-tail polarity of the main embryonic axis. Bicoid deficiency results in embryos with tail-to-tail polarity and no head. However, most insects lack bicoid, and the molecular mechanism for establishing head-to-tail polarity is poorly understood. We have identified a gene that establishes head-to-tail polarity of the mosquito-like midge, Chironomus riparius. This gene, named panish, encodes a cysteine-clamp DNA binding domain and operates through a different mechanism than bicoid. This finding, combined with the observation that the phylogenetic distributions of panish and bicoid are limited to specific families of flies, reveals frequent evolutionary changes of body axis determinants and a remarkable opportunity to study gene regulatory network evolution.


Assuntos
Padronização Corporal/genética , Chironomidae/embriologia , Proteínas de Ligação a DNA/fisiologia , Embrião não Mamífero/embriologia , Proteínas de Homeodomínio/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Chironomidae/genética , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína/genética , Transativadores/classificação , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA