Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793951

RESUMO

ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the µ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Herpesvirus Humano 3/metabolismo , Proteínas Virais/metabolismo , Rede trans-Golgi/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Vesículas Revestidas por Clatrina/genética , Vesículas Revestidas por Clatrina/virologia , Herpesvirus Humano 3/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Virais/genética , Rede trans-Golgi/genética , Rede trans-Golgi/virologia
2.
Vet Res ; 44: 125, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359464

RESUMO

Marek's disease virus (MDV) is an alpha-herpesvirus causing Marek's disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells. In culture, rRB-1B EGFP22 led to 1.6-fold smaller plaques than the parental virus. In chickens, the rRB-1B EGFP22 virus was impaired in its ability to induce lymphoma and to spread in contact birds. The MDV genome copy number in blood and feathers during the time course of infection indicated that rRB-1B EGFP22 reached its two major target cells, but had a growth defect in these two tissues. Therefore, the integrity of VP22 is critical for an efficient replication in vivo, for tumor formation and horizontal transmission. An examination of EGFP fluorescence in rRB-1B EGFP22-induced tumors showed that about 0.1% of the cells were in lytic phase. EGFP-positive tumor cells were selected by cytometry and analyzed for MDV morphogenesis by transmission electron microscopy. Only few particles were present per cell, and all types of virions (except mature enveloped virions) were detected unequivocally inside tumor lymphoid cells. These results indicate that MDV morphogenesis in tumor cells is more similar to the morphorgenesis in fibroblastic cells in culture, albeit poorly efficient, than in feather follicle epithelial cells.


Assuntos
Galinhas , Herpesvirus Galináceo 2/fisiologia , Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/genética , Animais , Carcinogênese , Células Cultivadas , Proteínas de Fluorescência Verde , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/metabolismo , Doença de Marek/patologia , Doença de Marek/transmissão , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/transmissão , Proteínas Virais/metabolismo , Virulência , Replicação Viral
3.
Nature ; 503(7476): 402-405, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24196705

RESUMO

Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.


Assuntos
HIV-1/imunologia , Evasão da Resposta Imune , Imunidade Inata/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Ciclofilinas/metabolismo , Ciclosporina/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Macrófagos/citologia , Macrófagos/patologia , Chaperonas Moleculares/metabolismo , Monócitos/citologia , NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores de Reconhecimento de Padrão , Internalização do Vírus , Replicação Viral/imunologia , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
4.
Vet Res ; 38(3): 419-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506972

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that is highly contagious in poultry. Recombinant RB-1B (rRB-1B) reconstituted from an infectious genome cloned as a bacterial artificial chromosome (BAC) is unable to spread horizontally, quite in contrast to parental RB-1B. This finding suggests the presence of one or several mutations in cloned relative to parental viral DNA. Sequence analyses of the pRB-1B bacmid identified a one-nucleotide insertion in the UL13 orthologous gene that causes a frame-shift mutation and thereby results in a theoretical truncated UL13 protein (176 aa vs. 513 aa in parental RB-1B). UL13 genes are conserved among alphaherpesviruses and encode protein kinases. Using two-step "en passant" mutagenesis, we restored the UL13 ORF in pRB-1B. After transfection of UL13-positive pRB-1B DNA (pRB-1B*UL13), the resulting, repaired virus did not exhibit a difference in cell-to cell spread (measured by plaque sizes) and in UL13 transcripts in culture compared to parental rRB-1B virus. Although 89% of the chickens inoculated with rRB-1B*UL13 virus developed tumors in visceral organs, none of the contact birds did. MDV antigens were clearly expressed in the feather tips of rRB-1B infected chickens, suggesting that the UL13 gene mutation did not alter virus tropism of the feather follicle. The results indicate that the correction in UL13 gene alone is not sufficient to restore in vivo spreading capabilities of the rRB-1B virus, and that other region(s) of pRB-1B might be involved in the loss-of-function phenotype. This finding also shows for the first time that a full UL13 ORF is dispensable for MDV tumor formation and feather follicle tropism.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Mardivirus , Doença de Marek/transmissão , Doença de Marek/virologia , Proteínas Quinases/genética , Animais , Sequência de Bases , Galinhas , DNA Viral/química , Plumas/fisiologia , Plumas/virologia , Mutação da Fase de Leitura , Mardivirus/genética , Mardivirus/isolamento & purificação , Mardivirus/patogenicidade , Dados de Sequência Molecular , Fases de Leitura Aberta , Mutação Puntual , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Proteínas Quinases/fisiologia , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA