Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(5): E588-E601, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477875

RESUMO

In rodents, loss of estradiol (E2) reduces brown adipose tissue (BAT) metabolic activity. Whether E2 impacts BAT activity in women is not known. BAT oxidative metabolism was measured in premenopausal (n = 27; 35 ± 9 yr; body mass index = 26.0 ± 5.3 kg/m2) and postmenopausal (n = 25; 51 ± 8 yr; body mass index = 28.0 ± 5.0 kg/m2) women at room temperature and during acute cold exposure using [11C]acetate with positron emission tomography coupled with computed tomograph. BAT glucose uptake was also measured during acute cold exposure using 2-deoxy-2-[18F]fluoro-d-glucose. To isolate the effects of ovarian hormones from biological aging, measurements were repeated in a subset of premenopausal women (n = 8; 40 ± 4 yr; BMI = 28.0 ± 7.2 kg/m2) after 6 mo of gonadotropin-releasing hormone agonist therapy to suppress ovarian hormones. At room temperature, there was no difference in BAT oxidative metabolism between premenopausal (0.56 ± 0.31 min-1) and postmenopausal women (0.63 ± 0.28 min-1). During cold exposure, BAT oxidative metabolism (1.28 ± 0.85 vs. 0.91 ± 0.63 min-1, P = 0.03) and net BAT glucose uptake (84.4 ± 82.5 vs. 29.7 ± 31.4 nmol·g-1·min-1, P < 0.01) were higher in premenopausal than postmenopausal women. In premenopausal women who underwent gonadotropin-releasing hormone agonist, cold-stimulated BAT oxidative metabolism was reduced to a similar level (from 1.36 ± 0.66 min-1 to 0.91 ± 0.41 min-1) to that observed in postmenopausal women (0.91 ± 0.63 min-1). These results provide the first evidence in humans that reproductive hormones are associated with BAT oxidative metabolism and suggest that BAT may be a target to attenuate age-related reduction in energy expenditure and maintain metabolic health in postmenopausal women.NEW & NOTEWORTHY In rodents, loss of estrogen reduces brown adipose tissue (BAT) activity. Whether this is true in humans is not known. We found that BAT oxidative metabolism and glucose uptake were lower in postmenopausal compared to premenopausal women. In premenopausal women who underwent ovarian suppression to reduce circulating estrogen, BAT oxidative metabolism was reduced to postmenopausal levels. Thus the loss of ovarian function in women leads to a reduction in BAT metabolic activity independent of age.


Assuntos
Tecido Adiposo Marrom , Fluordesoxiglucose F18 , Humanos , Feminino , Tecido Adiposo Marrom/metabolismo , Fluordesoxiglucose F18/metabolismo , Metabolismo Energético , Glucose/metabolismo , Tomografia por Emissão de Pósitrons , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Temperatura Baixa , Termogênese
2.
EBioMedicine ; 83: 104192, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965199

RESUMO

BACKGROUND: Current paradigms for predicting weight loss in response to energy restriction have general validity but a subset of individuals fail to respond adequately despite documented diet adherence. Patients in the bottom 20% for rate of weight loss following a hypocaloric diet (diet-resistant) have been found to have less type I muscle fibres and lower skeletal muscle mitochondrial function, leading to the hypothesis that physical exercise may be an effective treatment when diet alone is inadequate. In this study, we aimed to assess the efficacy of exercise training on mitochondrial function in women with obesity with a documented history of minimal diet-induced weight loss. METHODS: From over 5000 patient records, 228 files were reviewed to identify baseline characteristics of weight loss response from women with obesity who were previously classified in the top or bottom 20% quintiles based on rate of weight loss in the first 6 weeks during which a 900 kcal/day meal replacement was consumed. A subset of 20 women with obesity were identified based on diet-resistance (n=10) and diet sensitivity (n=10) to undergo a 6-week supervised, progressive, combined aerobic and resistance exercise intervention. FINDINGS: Diet-sensitive women had lower baseline adiposity, higher fasting insulin and triglycerides, and a greater number of ATP-III criteria for metabolic syndrome. Conversely in diet-resistant women, the exercise intervention improved body composition, skeletal muscle mitochondrial content and metabolism, with minimal effects in diet-sensitive women. In-depth analyses of muscle metabolomes revealed distinct group- and intervention- differences, including lower serine-associated sphingolipid synthesis in diet-resistant women following exercise training. INTERPRETATION: Exercise preferentially enhances skeletal muscle metabolism and improves body composition in women with a history of minimal diet-induced weight loss. These clinical and metabolic mechanism insights move the field towards better personalised approaches for the treatment of distinct obesity phenotypes. FUNDING: Canadian Institutes of Health Research (CIHR-INMD and FDN-143278; CAN-163902; CIHR PJT-148634).


Assuntos
Insulinas , Obesidade , Trifosfato de Adenosina/metabolismo , Canadá , Dieta Redutora , Exercício Físico/fisiologia , Feminino , Humanos , Insulinas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Triglicerídeos/metabolismo , Redução de Peso
3.
Diabetes ; 69(4): 567-577, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31915151

RESUMO

Reduced storage of dietary fatty acids (DFAs) in abdominal adipose tissues with enhanced cardiac partitioning has been shown in subjects with type 2 diabetes (T2D) and prediabetes. We measured DFA metabolism and organ partitioning using positron emission tomography with oral and intravenous long-chain fatty acid and glucose tracers during a standard liquid meal in 12 obese subjects with T2D before and 8-12 days after bariatric surgery (sleeve gastrectomy or sleeve gastrectomy and biliopancreatic diversion with duodenal switch). Bariatric surgery reduced cardiac DFA uptake from a median (standard uptake value [SUV]) 1.75 (interquartile range 1.39-2.57) before to 1.09 (1.04-1.53) after surgery (P = 0.01) and systemic DFA spillover from 56.7 mmol before to 24.7 mmol over 6 h after meal intake after surgery (P = 0.01), with a significant increase in intra-abdominal adipose tissue DFA uptake from 0.15 (0.04-0.31] before to 0.49 (0.20-0.59) SUV after surgery (P = 0.008). Hepatic insulin resistance was significantly reduced in close association with increased DFA storage in intra-abdominal adipose tissues (r = -0.79, P = 0.05) and reduced DFA spillover (r = 0.76, P = 0.01). We conclude that bariatric surgery in subjects with T2D rapidly reduces cardiac DFA partitioning and hepatic insulin resistance at least in part through increased intra-abdominal DFA storage and reduced spillover.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Miocárdio/metabolismo , Obesidade/cirurgia , Adulto , Glicemia/metabolismo , Composição Corporal/fisiologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Humanos , Gordura Intra-Abdominal/diagnóstico por imagem , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Tomografia Computadorizada por Raios X , Resultado do Tratamento
4.
EJNMMI Res ; 9(1): 31, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919091

RESUMO

BACKGROUND: [11C]-acetate positron emission tomography is used to assess oxidative metabolism in various tissues including the heart, tumor, and brown adipose tissue. For brown adipose tissue, a monoexponential decay model is commonly employed. However, no systematic assessment of kinetic models has been performed to validate this model or others. The monoexponential decay model and various compartmental models were applied to data obtained before and during brown adipose tissue activation by cold exposure in healthy men. Quality of fit was assessed visually and by analysis of residuals, including the Akaike information criterion. Stability and accuracy of compartmental models were further assessed through simulations, along with sensitivity and identifiability of kinetic parameters. RESULTS: Differences were noted in the arterial input function between the warm and cold conditions. These differences are not taken into account by the monoexponential decay model. They are accounted for by compartmental models, but most models proved too complex to be stable. Two and three-tissue models with no more than four distinct kinetic parameters, including blood volume fraction, provided the best compromise between fit quality and stability/accuracy. CONCLUSION: For healthy men, a three-tissue model with four kinetic parameters, similar to a heart [11C]-palmitate model seems the most appropriate based on model stability and its ability to describe the main [11C]-acetate pathways in BAT cells. Further studies are required to validate this model in women and people with metabolic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA