Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Cancer ; 202: 113978, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471290

RESUMO

BACKGROUND: The PAOLA-1/ENGOT-ov25 trial showed that maintenance olaparib plus bevacizumab increases survival of advanced ovarian cancer patients with homologous recombination deficiency (HRD). However, decentralized solutions to test for HRD in clinical routine are scarce. The goal of this study was to retrospectively validate on tumor samples from the PAOLA-1 trial, the decentralized SeqOne assay, which relies on shallow Whole Genome Sequencing (sWGS) to capture genomic instability and targeted sequencing to determine BRCA status. METHODS: The study comprised 368 patients from the PAOLA-1 trial. The SeqOne assay was compared to the Myriad MyChoice HRD test (Myriad Genetics), and results were analyzed with respect to Progression-Free Survival (PFS). RESULTS: We found a 95% concordance between the HRD status of the two tests (95% Confidence Interval (CI); 92%-97%). The Positive Percentage Agreement (PPA) of the sWGS test was 95% (95% CI; 91%-97%) like its Negative Percentage Agreement (NPA) (95% CI; 89%-98%). In patients with HRD-positive tumors treated with olaparib plus bevacizumab, the PFS Hazard Ratio (HR) was 0.38 (95% CI; 0.26-0.54) with SeqOne assay and 0.32 (95% CI; 0.22-0.45) with the Myriad assay. In patients with HRD-negative tumors, HR was 0.99 (95% CI; 0.68-1.42) and 1.05 (95% CI; 0.70-1.57) with SeqOne and Myriad assays. Among patients with BRCA-wildtype tumors, those with HRD-positive tumors, benefited from olaparib plus bevacizumab maintenance, with HR of 0.48 (95% CI: 0.29-0.79) and of 0.38 (95% CI: 0.23 to 0.63) with the SeqOne and Myriad assay. CONCLUSION: The SeqOne assay offers a clinically validated approach to detect HRD.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Bevacizumab/uso terapêutico , Estudos Retrospectivos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário , Recombinação Homóloga
2.
Trials ; 24(1): 380, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280655

RESUMO

Adjustment for prognostic covariates increases the statistical power of randomized trials. The factors influencing the increase of power are well-known for trials with continuous outcomes. Here, we study which factors influence power and sample size requirements in time-to-event trials. We consider both parametric simulations and simulations derived from the Cancer Genome Atlas (TCGA) cohort of hepatocellular carcinoma (HCC) patients to assess how sample size requirements are reduced with covariate adjustment. Simulations demonstrate that the benefit of covariate adjustment increases with the prognostic performance of the adjustment covariate (C-index) and with the cumulative incidence of the event in the trial. For a covariate that has an intermediate prognostic performance (C-index=0.65), the reduction of sample size varies from 3.1% when cumulative incidence is of 10% to 29.1% when the cumulative incidence is of 90%. Broadening eligibility criteria usually reduces statistical power while our simulations show that it can be maintained with adequate covariate adjustment. In a simulation of adjuvant trials in HCC, we find that the number of patients screened for eligibility can be divided by 2.4 when broadening eligibility criteria. Last, we find that the Cox-Snell [Formula: see text] is a conservative estimation of the reduction in sample size requirements provided by covariate adjustment. Overall, more systematic adjustment for prognostic covariates leads to more efficient and inclusive clinical trials especially when cumulative incidence is large as in metastatic and advanced cancers. Code and results are available at https://github.com/owkin/CovadjustSim .


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Simulação por Computador , Neoplasias Hepáticas/terapia , Prognóstico , Tamanho da Amostra , Ensaios Clínicos como Assunto
4.
Eur J Hum Genet ; 29(2): 325-337, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33005019

RESUMO

Taste is essential for the interaction of animals with their food and has co-evolved with diet. Humans have peopled a large range of environments and present a wide range of diets, but little is known about the diversity and evolution of human taste perception. We measured taste recognition thresholds across populations differing in lifestyles (hunter gatherers and farmers from Central Africa, nomad herders, and farmers from Central Asia). We also generated genome-wide genotype data and performed association studies and selection scans in order to link the phenotypic variation in taste sensitivity with genetic variation. We found that hunter gatherers have lower overall sensitivity as well as lower sensitivity to quinine and fructose than their farming neighbors. In parallel, there is strong population divergence in genes associated with tongue morphogenesis and genes involved in the transduction pathway of taste signals in the African populations. We find signals of recent selection in bitter taste-receptor genes for all four populations. Enrichment analysis on association scans for the various tastes confirmed already documented associations and revealed novel GO terms that are good candidates for being involved in taste perception. Our framework permitted us to gain insight into the genetic basis of taste sensitivity variation across populations and lifestyles.


Assuntos
Genoma , Estilo de Vida , Percepção Gustatória/genética , Paladar/genética , Adolescente , Adulto , Povo Asiático , População Negra , Genótipo , Humanos , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
5.
BMC Bioinformatics ; 21(1): 16, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931698

RESUMO

BACKGROUND: Cell-type heterogeneity of tumors is a key factor in tumor progression and response to chemotherapy. Tumor cell-type heterogeneity, defined as the proportion of the various cell-types in a tumor, can be inferred from DNA methylation of surgical specimens. However, confounding factors known to associate with methylation values, such as age and sex, complicate accurate inference of cell-type proportions. While reference-free algorithms have been developed to infer cell-type proportions from DNA methylation, a comparative evaluation of the performance of these methods is still lacking. RESULTS: Here we use simulations to evaluate several computational pipelines based on the software packages MeDeCom, EDec, and RefFreeEWAS. We identify that accounting for confounders, feature selection, and the choice of the number of estimated cell types are critical steps for inferring cell-type proportions. We find that removal of methylation probes which are correlated with confounder variables reduces the error of inference by 30-35%, and that selection of cell-type informative probes has similar effect. We show that Cattell's rule based on the scree plot is a powerful tool to determine the number of cell-types. Once the pre-processing steps are achieved, the three deconvolution methods provide comparable results. We observe that all the algorithms' performance improves when inter-sample variation of cell-type proportions is large or when the number of available samples is large. We find that under specific circumstances the methods are sensitive to the initialization method, suggesting that averaging different solutions or optimizing initialization is an avenue for future research. CONCLUSION: Based on the lessons learned, to facilitate pipeline validation and catalyze further pipeline improvement by the community, we develop a benchmark pipeline for inference of cell-type proportions and implement it in the R package medepir.


Assuntos
Biologia Computacional/normas , Metilação de DNA , Neoplasias/genética , Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Humanos , Software
6.
Genetics ; 212(1): 65-74, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808621

RESUMO

Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a score reflecting the genetic risk of developing a disease. PRS might have a major impact on public health, possibly allowing for screening campaigns to identify high-genetic risk individuals for a given disease. The "Clumping+Thresholding" (C+T) approach is the most common method to derive PRS. C+T uses only univariate genome-wide association studies (GWAS) summary statistics, which makes it fast and easy to use. However, previous work showed that jointly estimating SNP effects for computing PRS has the potential to significantly improve the predictive performance of PRS as compared to C+T. In this paper, we present an efficient method for the joint estimation of SNP effects using individual-level data, allowing for practical application of penalized logistic regression (PLR) on modern datasets including hundreds of thousands of individuals. Moreover, our implementation of PLR directly includes automatic choices for hyper-parameters. We also provide an implementation of penalized linear regression for quantitative traits. We compare the performance of PLR, C+T and a derivation of random forests using both real and simulated data. Overall, we find that PLR achieves equal or higher predictive performance than C+T in most scenarios considered, while being scalable to biobank data. In particular, we find that improvement in predictive performance is more pronounced when there are few effects located in nearby genomic regions with correlated SNPs; for instance, in simulations, AUC values increase from 83% with the best prediction of C+T to 92.5% with PLR. We confirm these results in a data analysis of a case-control study for celiac disease where PLR and the standard C+T method achieve AUC values of 89% and of 82.5%. Applying penalized linear regression to 350,000 individuals of the UK Biobank, we predict height with a larger correlation than with the best prediction of C+T (∼65% instead of ∼55%), further demonstrating its scalability and strong predictive power, even for highly polygenic traits. Moreover, using 150,000 individuals of the UK Biobank, we are able to predict breast cancer better than C+T, fitting PLR in a few minutes only. In conclusion, this paper demonstrates the feasibility and relevance of using penalized regression for PRS computation when large individual-level datasets are available, thanks to the efficient implementation available in our R package bigstatsr.


Assuntos
Algoritmos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Doença Celíaca/genética , Feminino , Humanos , Masculino
7.
Emerg Infect Dis ; 24(12): 2176-2183, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457534

RESUMO

Rat lungworm (Angiostrongylus cantonensis), a parasitic nematode that can cause eosinophilic meningitis in humans, was first detected in New Orleans, Louisiana, USA, in the mid-1980s and now appears to be widespread in the southeastern United States. We assessed the distribution, prevalence, and intensity of A. cantonensis infection in New Orleans by examining lung biopsy samples of rodents trapped at 96 sites in 9 areas in Orleans Parish and 1 area in neighboring St. Bernard Parish during May 2015 through February 2017. These areas were selected to capture contrasting levels of income, flooding, and pos-disaster landscape management after Hurricane Katrina in 2005. We detected A. cantonensis in all areas and in 3 of the 4 rat species trapped. Overall prevalence was ≈38% but varied by area, host species, and host species co-occurrence. Infection intensity also varied by host species. These findings suggest that socioecological analysis of heterogeneity in definitive and intermediate host infection could improve understanding of health risks across the city.


Assuntos
Desastres , Roedores , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/parasitologia , Animais , Geografia Médica , Nova Orleans/epidemiologia , Prevalência , Ratos , Medição de Risco , Fatores de Risco
8.
J Bone Joint Surg Am ; 100(18): 1574-1580, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30234621

RESUMO

BACKGROUND: As high-quality health care becomes increasingly expensive, improvement projects are focused on reducing cost and increasing value. To increase value by reducing operating room (OR) utilization, we studied the effect of a dedicated team approach for posterior spinal fusion (PSF) for scoliosis. METHODS: With institutional support, an interdisciplinary, dedicated team was assembled. Members developed standardized protocols for anesthetic management and patient transport, positioning, preparation, draping, imaging, and wake-up. These protocols were initially implemented with a small interdisciplinary team, including 1 surgeon (Phase 1), and then were expanded to include a second surgeon and additional anesthesiology staff (Phase 2). We compared procedures performed with a dedicated team (the Dedicated Team cases) and procedures performed without a such a team (the Casual Team cases). Because of the heterogeneous nature of PSF for scoliosis, we developed a case categorization system: Category 1 was relatively homogeneous and indicated patients with fusion of ≤12 levels, no osteotomies, and a body mass index (BMI) of <25 kg/m, and Category 2 was more heterogeneous and indicated patients with fusion of >12 levels and/or ≥1 osteotomy and/or a BMI of ≥25 kg/m. RESULTS: In total, 89 Casual Team and 78 Dedicated Team cases were evaluated: 71 were in Category 1 and 96 were in Category 2. Dedicated Team cases used significantly less OR time for both Categories 1 and 2 (p < 0.001). In Category-1 cases, the average reduction was 111.4 minutes (29.7%); in Category-2 cases, it was 76.9 minutes (18.5%). The effect of the Dedicated Team was scalable: the reduction in OR time was significant in both Phase 1 and Phase 2 (p < 0.001). The Dedicated Team cases had no complications. Cost reduction averaged approximately $8,900 for Category-1 and $6,000 for Category-2 cases. CONCLUSIONS: By creating a dedicated team and standardizing several aspects of PSFs for scoliosis, we achieved a large reduction in OR time. This increase in team efficiency was significant, consistent, and scalable. As a result, we can routinely complete 2 Category-1 PSFs in the same OR with the same team without exceeding standard block time.


Assuntos
Custos e Análise de Custo , Duração da Cirurgia , Equipe de Assistência ao Paciente/economia , Escoliose/cirurgia , Fusão Vertebral/economia , Criança , Humanos , Estudos Retrospectivos
9.
Am J Hum Genet ; 103(3): 400-412, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122540

RESUMO

Multiple morphological abnormalities of the sperm flagellum (MMAF) is a severe form of male infertility defined by the presence of a mosaic of anomalies, including short, bent, curled, thick, or absent flagella, resulting from a severe disorganization of the axoneme and of the peri-axonemal structures. Mutations in DNAH1, CFAP43, and CFAP44, three genes encoding axoneme-related proteins, have been described to account for approximately 30% of the MMAF cases reported so far. Here, we searched for pathological copy-number variants in whole-exome sequencing data from a cohort of 78 MMAF-affected subjects to identify additional genes associated with MMAF. In 7 of 78 affected individuals, we identified a homozygous deletion that removes the two penultimate exons of WDR66 (also named CFAP251), a gene coding for an axonemal protein preferentially localized in the testis and described to localize to the calmodulin- and spoke-associated complex at the base of radial spoke 3. Sequence analysis of the breakpoint region revealed in all deleted subjects the presence of a single chimeric SVA (SINE-VNTR-Alu) at the breakpoint site, suggesting that the initial deletion event was potentially mediated by an SVA insertion-recombination mechanism. Study of Trypanosoma WDR66's ortholog (TbWDR66) highlighted high sequence and structural analogy with the human protein and confirmed axonemal localization of the protein. Reproduction of the human deletion in TbWDR66 impaired flagellar movement, thus confirming WDR66 as a gene associated with the MMAF phenotype and highlighting the importance of the WDR66 C-terminal region.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação ao Cálcio/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação/genética , Cauda do Espermatozoide/patologia , Espermatozoides/anormalidades , Axonema/genética , Estudos de Coortes , Dineínas/genética , Homozigoto , Humanos , Masculino , Testículo/patologia , Sequenciamento do Exoma/métodos
10.
Sci Total Environ ; 642: 904-913, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929142

RESUMO

The plant microbiome, composed of diverse interacting microorganisms, is thought to undergird host integrity and well-being. Though it is well understood that environmental perturbations like oil pollution can alter the diversity and composition of microbiomes, remarkably little is known about how disturbance alters plant-fungal associations. Using Next-Generation sequencing of the 18S rDNA internal transcribed spacer (ITS1) region, we examined outcomes of enduring oil exposure on aboveground leaf and belowground endophytic root and rhizosphere fungal communities of Spartina alterniflora, a highly valued ecosystem engineer in southeastern Louisiana marshes affected by the 2010 Deepwater Horizon accident. We found that aboveground foliar fungal communities exhibited site-dependent compositional turnover with consequent loss in diversity according to oiling history. Rhizosphere soil communities also exhibited shifts in community composition associated with oiling history, whereas root endophytic communities did not. Oiling did not increase or decrease similarities among aboveground and belowground communities within an individual host, indicating that host plant characteristics exert stronger control than external factors on fungal community composition. These results show that fungal community responses to oiling vary within tissues of the same host plant, and that differences in the local environment, or alternatively, site-specific differences in residual oil constrain the magnitude of exposure responses. Our study offers novel perspectives on how environmental contaminants and perturbations can influence plant microbiomes, highlighting the importance of assessing long-term ecological outcomes of oil pollution to better understand how shifts in microbial communities influence plant performance and ecosystem function. Our findings are relevant to coastal management programs tasked with responding to oil spills and increasing pressures arising from intensifying development and climate change. Understanding how modification of plant-microbiome associations influences plant performance, particularly of ecosystem engineers like S. alterniflora, can help guide efforts to protect and restore at-risk coastal ecosystems.


Assuntos
Fungos , Poluição por Petróleo , Microbiologia da Água , Áreas Alagadas , Ecossistema , Louisiana , Poaceae , Tolerância ao Sal
11.
PLoS One ; 10(4): e0122378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923203

RESUMO

Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.


Assuntos
Ecossistema , Endófitos/fisiologia , Poluição por Petróleo , Poaceae/microbiologia , Áreas Alagadas , Simbiose/fisiologia
12.
Int Immunopharmacol ; 14(4): 722-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23102666

RESUMO

The human immune system represents a highly complex multicellular network that protects the organism against the environment and pathogens. Within this system, different immune cells communicate with each other, as well as with adjacent organs and tissues, using an impressive network of regulatory signals. This inherent complexity makes it rather difficult to mimic these processes in vitro. Unpredictable drug-induced side effects can be the consequence when moving from preclinical animal models into clinical phase. Therefore, there is a demand for more elaborate in vivo like human cell culture models. In this study, an in vitro co-culture model consisting of Caco-2 human gut epithelial cells and human whole blood representing the immune system is applied to investigate the intestinal absorption of anti-inflammatory drugs and the subsequent modulation of the immunoregulatory signaling processes. By using blood of different donors, the individuality of the immune system is integrated into the overall analysis. The anti-inflammatory drugs prednisolone and ibuprofen were applied on top of the Caco-2 epithelial cells and alterations in the extracellular communication via cytokines and chemokines were visualized using miniaturized multiplexed sandwich immunoassays. Optionally, pretreatment of the Caco-2 epithelial cells with pro-inflammatory mediators can be used to modulate the epithelial barrier function similar to the situation observed during inflammatory conditions of the gut. The presented translational test system, consisting of differentiated Caco-2 intestinal epithelial cells and whole blood substantially improves preclinical screening of immunologically active drugs with respect to an approximation of the human "in vivo" conditions.


Assuntos
Sangue , Técnicas de Cocultura/métodos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Ibuprofeno/farmacologia , Prednisolona/farmacologia , Anti-Inflamatórios/farmacologia , Células CACO-2 , Células Epiteliais/fisiologia , Humanos , Modelos Biológicos
13.
J Biol Chem ; 277(49): 47898-906, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12324448

RESUMO

T cell-specific expression of human and mouse CD3delta is known to be governed by an enhancer element immediately downstream from the gene. Here we demonstrate by transgenic and in vitro studies that the murine CD3delta (mCD3delta) promoter prefers to be expressed in cells of the T lineage. Deletion analyses of a promoter segment (-401/+48 bp) followed by transient transfections indicate that upstream elements between -149 and -112 bp contribute to full expression of the gene. Furthermore, a core promoter region -37/+29 appears to contribute to a T cell specificity. Using substitution mutant scanning, four positive and one negative regulatory elements were found within the mCD3delta core promoter. The first two positive elements comprise two classical initiator-like sites, which recruit TFII-I, whereas a third contains a functional Ets binding site. Immediately adjacent to the observed transcription start site is a negative element that utilizes the transcription regulator YY1. The last positive regulatory element contains a potentially functional CREB binding site and the minor transcriptional start site. Because NERF-2, Elf-1, and Ets-1 are expressed preferentially in lymphocytes and because, in addition, YY1 represses the promoter activity strongly in non-T cells, we conclude that the combination of these transcription factors contributes to the T cell-specific expression pattern of mouse CD3delta.


Assuntos
Complexo CD3/biossíntese , Complexo CD3/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Linfócitos T/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Northern Blotting , Antígenos CD4/biossíntese , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Deleção de Genes , Genes Reporter , Humanos , Células Jurkat , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA