RESUMO
AIMS/HYPOTHESIS: Recent studies with normal rats and mouse allograft models have reported that insulin and insulin analogues do not activate the IGF-1 receptor in vivo, and that this characteristic therefore cannot be responsible for the increased incidence of mammary tumours observed for the insulin analogue X10 in chronic toxicity studies with Sprague Dawley rats. This is in clear contrast to reports of insulin and insulin analogues in vitro. Clarification of this is important for understanding the mechanisms behind possible growth-promoting effects of insulin analogues, and will have implications for the development of novel insulin analogues. METHODS: We established a xenograft model in BALB/c nude mice with the human colon cancer cell line COLO-205, which expresses human insulin and IGF-1 receptors, and explored the acute and chronic effects of treatment with supra-pharmacological doses of human insulin, insulin analogue X10 and human IGF-1. With a novel antibody, acute IGF-1 receptor activation was also examined in various tissues from normal rats treated with human insulin, insulin analogue X10 or human IGF-1. Finally, the effects of pharmacologically relevant doses of human insulin and insulin analogue X10 on receptor activation and growth of COLO-205 xenograft were explored in BALB/c nude mice with alloxan-induced hyperglycaemia. RESULTS: In normal rats and in BALB/c nude mice bearing a COLO-205 cell xenograft, treatment with supra-pharmacological doses of human insulin, insulin analogue X10 or human IGF-1 resulted in activation of insulin receptors as well as IGF-1 receptors. Treatment of diabetic nude mice with pharmacologically relevant doses of human insulin or insulin analogue X10, which decreased blood glucose from hyperglycaemic levels to the normoglycaemic range, did not increase IGF-1 receptor activation. Furthermore, repeated treatment with supra-pharmacological as well as pharmacological doses of human insulin or insulin analogue X10 did not influence the growth of COLO-205 xenografts. CONCLUSIONS/INTERPRETATION: This study demonstrates that activation of IGF-1 receptors in cancer cells by insulin and insulin analogues cannot be considered as a purely in vitro phenomenon. It does occur in vivo in animal models, although only after treatment with supra-pharmacological doses. Furthermore, treatment with insulin or insulin analogue X10 did not influence the growth of COLO-205 xenografts under normo- or hypoglycaemic conditions. Further studies are needed before a conclusion can be reached on whether IGF-1 receptor activation by insulin analogues correlates with increased growth in vivo.
Assuntos
Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Aloxano/toxicidade , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante HeterólogoRESUMO
We report on the development and application of a broadband absorption spectrometer utilizing a pulsed supercontinuum laser light source and dispersion compensating fiber with a single-pass absorption path to obtain absolute methane mole fractions in a laminar nonpremixed CH(4)/air flame supported on a Wolfhard-Parker burner. The basic principle of supercontinuum broadband absorption spectroscopy (SCLAS) provides advantageous means of combustion diagnostics since the broad spectral coverage allows for use in high-pressure high-temperature environments. Furthermore, a previously validated tunable diode laser absorption spectroscopy fitting algorithm was applied to the recorded spectra and found to be applicable to SCLAS measurements as well, by comparison of fitted methane gas concentrations to reference measurements on the Wolfhard-Parker burner. The spectrometer reached spectral resolutions of up to 0.152 cm(-1), while providing a spectral coverage of over 110 cm(-1), with an absorption path length of only 41 mm. First measurements of absolute CH(4) mole fractions showed the suitability of SCL-based spectroscopy for combustion diagnostics with short absorption path lengths in the nIR spectral region. Here, we achieved in-flame methane mole fraction resolutions of 3%(Vol.) (1210 ppm·m) and optical resolutions of up to 1.1×10(-2). Based on this first validation, this method can now be extended to other species and combustion parameters such as temperature and pressure.
RESUMO
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), have been suggested to act as beta-cell growth factors and may therefore be of critical importance for the maintenance of a proper beta-cell mass. We have investigated the molecular mechanism of incretin-induced beta-cell replication in primary monolayer cultures of newborn rat islet cells. GLP-1, GIP and the long-acting GLP-1 derivative, liraglutide, increased beta-cell replication 50-80% at 10-100 nM upon a 24 h stimulus, whereas glucagon at a similar concentration had no significant effect. The stimulatory effect of GLP-1 and GIP was efficiently mimicked by the adenylate cyclase activator, forskolin, at 10 nM (approximately 90% increase) and was additive (approximately 170-250% increase) with the growth response to human growth hormone (hGH), indicating the use of distinct intracellular signalling pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, both inhibited GLP-1- and GIP-stimulated proliferation. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, had no inhibitory effect on either GLP-1 or GIP stimulated proliferation. Cyclin Ds act as molecular switches for the G0/G1-S phase transition in many cell types and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 mRNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-1 cells revealed approximately a 2-3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4-7 fold increase in response to forskolin. However, treatment of either cell type with hGH had no effect on cyclin D1 promoter activity. The stimulation of the cyclin D1 promoter by GLP-1 was inhibited by H89, wortmannin, and PD98059. We conclude that incretin-induced beta-cell replication is dependent on cAMP/PKA, p42 MAPK and PI3K activities, which may involve transcriptional induction of cyclin D1. GLP-1, GIP and liraglutide may have the potential to increase beta-cell replication in humans which would have significant impact on long-term diabetes treatment.
Assuntos
Ciclina D1/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcrição Gênica , Adenilil Ciclases/metabolismo , Androstadienos/farmacologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ciclina D1/genética , Ativação Enzimática , Flavonoides/farmacologia , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hormônio do Crescimento Humano/farmacologia , Imidazóis/farmacologia , Células Secretoras de Insulina/metabolismo , Isoquinolinas/farmacologia , Liraglutida , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Piridinas/farmacologia , Ratos , Estimulação Química , Sulfonamidas/farmacologia , Transdução Genética , WortmaninaRESUMO
BACKGROUND/PURPOSE: Incidence of skin complications in ostomy patients constitutes a well-known and well-described problem. The reasons are, however, very difficult to describe because of the many factors contributing to the problem. This article describes the skin changes derived exclusively from the adhesives used in a carefully controlled, long-term study using two fundamentally different types of adhesives: a hydrocolloid adhesive and a zinc oxide adhesive. METHODS: The adhesives were changed daily on the volar forearm of 11 volunteers for a 4-week period. Once a week, transepidermal water-loss (TEWL), water content of the skin, erythema and the peel force applied for removal of the adhesives were measured. On the last day of the study, a replica of the skin surface was obtained to determine changes in the skin topography, and a biopsy was taken to study changes at the cellular level. RESULTS AND CONCLUSION: We found increased TEWL and decreased water content in skin treated with the zinc oxide adhesive, but increased water-loss and water content when the hydrocolloid adhesive was used. In addition, the area treated with zinc oxide adhesive showed significant increase of epidermal thickness, scaly appearance and parakeratosis with similarities to pathological dry skin diseases such as psoriasis and atopic dermatitis, changes that were not found when using the hydrocolloid adhesive. The skin response seems to be the result of the content of zinc oxide and the mechanical interaction of the zinc oxide adhesive. We conclude that the nature of the adhesive plays an important role in the skin response to repeated application of adhesives, as seen in peristomal skin.
Assuntos
Adesivos/efeitos adversos , Bandagens/efeitos adversos , Coloides/efeitos adversos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pele/citologia , Pele/efeitos dos fármacos , Óxido de Zinco/efeitos adversos , Adesividade , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
We here show that GLP-1 and the long-acting GLP-1 analogue, liraglutide, interfere with diabetes-associated apoptotic processes in the beta-cell. Studies using primary neonatal rat islets showed that native GLP-1 and liraglutide inhibited both cytokine- and free fatty acid-induced apoptosis in a dose-dependent manner. The anti-apoptotic effect of liraglutide was mediated by the GLP-1 receptor as the specific GLP-1 receptor antagonist, exendin(9-39), blocked the effects. The adenylate cyclase activator, forskolin, had an anti-apoptotic effect similar to those of GLP-1 and liraglutide indicating that the effect was cAMP-mediated. Blocking the PI3 kinase pathway using wortmannin but not the MAP kinase pathways by PD98059 inhibited the effects of liraglutide. In conclusion, GLP-1 receptor activation has anti-apoptotic effect on both cytokine, and free fatty acid-induced apoptosis in primary islet-cells, thus suggesting that the long-acting GLP-1 analogue, liraglutide, may be useful for retaining beta-cell mass in both type 1 and type 2 diabetic patients.