Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358887

RESUMO

Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.


Assuntos
Córtex Auditivo , Animais , Camundongos , Córtex Auditivo/fisiologia , Adenosina , Aprendizagem/fisiologia , Estimulação Acústica , Som
2.
Nat Genet ; 54(12): 1827-1838, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36175792

RESUMO

We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Canais Iônicos/genética , Proteínas de Membrana/genética
3.
Curr Opin Neurobiol ; 54: 83-89, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30286407

RESUMO

Cortical circuits are particularly sensitive to incoming sensory information during well-defined intervals of postnatal development called 'critical periods'. The critical period for cortical plasticity closes in adults, thus restricting the brain's ability to indiscriminately store new sensory information. For example, children acquire language in an exposure-based manner, whereas learning language in adulthood requires more effort and attention. It has been suggested that pairing sounds with the activation of neuromodulatory circuits involved in attention reopens this critical period. Here, we review two critical period hypotheses related to neuromodulation: cortical disinhibition and thalamic adenosine. We posit that these mechanisms co-regulate the critical period for auditory cortical plasticity. We also discuss ways to reopen this period and rejuvenate cortical plasticity in adults.


Assuntos
Encéfalo/citologia , Período Crítico Psicológico , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Rejuvenescimento/fisiologia , Animais , Encéfalo/fisiologia , Humanos , Neurotransmissores/metabolismo
4.
Science ; 356(6345): 1352-1356, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663494

RESUMO

Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase-dependent adenosine production or A1-adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.


Assuntos
Adenosina/metabolismo , Córtex Auditivo/metabolismo , Transdução de Sinais , 5'-Nucleotidase/metabolismo , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Agonistas do Receptor A1 de Adenosina/administração & dosagem , Antagonistas do Receptor A1 de Adenosina/administração & dosagem , Animais , Percepção Auditiva , Proteínas Ligadas por GPI/metabolismo , Camundongos , Plasticidade Neuronal , Piperidinas/administração & dosagem , Piridazinas/administração & dosagem , Receptor A1 de Adenosina/metabolismo , Tálamo/metabolismo
5.
Neuroscientist ; 19(5): 465-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23558179

RESUMO

Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Transmissão Sináptica/fisiologia
6.
J Neurosci ; 33(17): 7345-57, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616541

RESUMO

Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.


Assuntos
Córtex Auditivo/fisiologia , Período Crítico Psicológico , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Tálamo/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
7.
J Neurosci ; 31(44): 16012-25, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049443

RESUMO

Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.


Assuntos
Córtex Cerebral/citologia , Depressão Sináptica de Longo Prazo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Glutamatos/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Receptor A1 de Adenosina/deficiência , Transmissão Sináptica/genética
8.
Sci STKE ; 2007(394): tr2, 2007 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-17632879

RESUMO

This lab describes two biochemical assays: One for measuring acetylcholinesterase activity and one for measuring protein concentration. Students learn how to manipulate small-volume samples, use a standard spectrophotometer or a microplate reader spectrophotometer, construct a standard curve, and normalize data. The lab is intended to be used in conjunction with a cell culture lab in which PC12 cells are exposed to various agents that influence their phenotypic state.


Assuntos
Acetilcolinesterase/metabolismo , Ensaios Enzimáticos Clínicos/métodos , Proteínas/análise , Animais , Educação , Células PC12 , Ratos , Espectrofotometria
9.
Sci STKE ; 2006(351): tr9, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16954573

RESUMO

This 3-week-long series of collaborative laboratory exercises explores how to use a cultured cell system (PC12 cells) to study signaling pathways involved in cellular differentiation. The laboratory would be useful in a neurobiology or cell biology course for advanced undergraduate students. The background and details for performing the lab are provided along with suggestions for assessing student performance and understanding.


Assuntos
Biologia/educação , Diferenciação Celular , Laboratórios , Ensino/métodos , Universidades , Animais , Neurobiologia/educação , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA