Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Imaging (Bellingham) ; 10(3): 034504, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274760

RESUMO

Purpose: The adoption of emerging imaging technologies in the medical community is often hampered when they provide a new unfamiliar contrast that requires experience to be interpreted. Dynamic full-field optical coherence tomography (D-FF-OCT) microscopy is such an emerging technique. It provides fast, high-resolution images of excised tissues with a contrast comparable to H&E histology but without any tissue preparation and alteration. Approach: We designed and compared two machine learning approaches to support interpretation of D-FF-OCT images of breast surgical specimens and thus provide tools to facilitate medical adoption. We conducted a pilot study on 51 breast lumpectomy and mastectomy surgical specimens and more than 1000 individual 1.3×1.3 mm2 images and compared with standard H&E histology diagnosis. Results: Using our automatic diagnosis algorithms, we obtained an accuracy above 88% at the image level (1.3×1.3 mm2) and above 96% at the specimen level (above cm2). Conclusions: Altogether, these results demonstrate the high potential of D-FF-OCT coupled to machine learning to provide a rapid, automatic, and accurate histopathology diagnosis with minimal sample alteration.

2.
Gut ; 70(1): 6-8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32447309

RESUMO

Full-field optical coherence tomography (FFOCT) is an imaging technique of biological tissue based on tissue light reflectance analysis. We evaluated the feasibility of imaging fresh digestive mucosal biopsies after a quick mounting procedure (5 min) using two distinct modalities of FFOCT. In static FFOCT mode, we gained high-resolution images of general gut tissue-specific architecture, such as oesophageal papillae, gastric pits, duodenal villi and colonic crypts. In dynamic FFOCT mode, we imaged individual epithelial cells of the mucosal lining with a cellular or subcellular resolution and identified cellular components of the lamina propria. FFOCT represents a promising dye-free imaging tool for on-site analysis of gut tissue remodelling.


Assuntos
Trato Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/patologia , Tomografia de Coerência Óptica , Biópsia , Endoscopia , Humanos , Mucosa/diagnóstico por imagem , Mucosa/patologia
3.
PLoS One ; 15(8): e0234165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866179

RESUMO

Histopathological examination of temporal artery biopsy (TAB) remains the gold standard for the diagnosis of giant cell arteritis (GCA) but is associated with essential limitations that emphasize the need for an upgraded pathological process. This study pioneered the use of full-field optical coherence tomography (FF-OCT) for rapid and automated on-site pathological diagnosis of GCA. Sixteen TABs (12 negative and 4 positive for GCA) were selected according to major histopathological criteria of GCA following hematoxylin-eosin-saffron-staining for subsequent acquisition with FF-OCT to compare structural modifications of the artery cell wall and thickness of each tunica. Gabor filtering of FF-OCT images was then used to compute TAB orientation maps and validate a potential automated analysis of TAB sections. FF-OCT allowed both qualitative and quantitative visualization of the main structures of the temporal artery wall, from the internal elastic lamina to the vasa vasorum and red blood cells, unveiling a significant correlation with conventional histology. FF-OCT imaging of GCA TABs revealed destruction of the media with distinct remodeling of the whole arterial wall into a denser reticular fibrous neo-intima, which is distinctive of GCA pathogenesis and accessible through automated Gabor filtering. Rapid on-site FF-OCT TAB acquisition makes it possible to identify some characteristic pathological lesions of GCA within a few minutes, paving the way for potential machine intelligence-based or even non-invasive diagnosis of GCA.


Assuntos
Arterite de Células Gigantes/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Arterite de Células Gigantes/diagnóstico , Arterite de Células Gigantes/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Artérias Temporais/diagnóstico por imagem , Artérias Temporais/patologia , Túnica Íntima/diagnóstico por imagem , Túnica Íntima/patologia , Túnica Média/diagnóstico por imagem , Túnica Média/patologia
4.
J Cancer Res Clin Oncol ; 144(10): 1967-1990, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29926160

RESUMO

INTRODUCTION: Tumor detection and visualization plays a key role in the clinical workflow of a patient with suspected cancer, both in the diagnosis and treatment. Several optical imaging techniques have been evaluated for guidance during oncological interventions. Optical coherence tomography (OCT) is a technique which has been widely evaluated during the past decades. This review aims to determine the clinical usefulness of OCT during cancer interventions focussing on qualitative features, quantitative features and the diagnostic value of OCT. METHODS: A systematic literature search was performed for articles published before May 2018 using OCT in the field of surgical oncology. Based on these articles, an overview of the clinical usefulness of OCT was provided per tumor type. RESULTS: A total of 785 articles were revealed by our search, of which a total of 136 original articles were available for analysis, which formed the basis of this review. OCT is currently utilised for both preoperative diagnosis and intraoperative detection of skin, oral, lung, breast, hepatobiliary, gastrointestinal, urological, and gynaecological malignancies. It showed promising results in tumor detection on a microscopic level, especially using higher resolution imaging techniques, such as high-definition OCT and full-field OCT. CONCLUSION: In the near future, OCT could be used as an additional tool during bronchoscopic or endoscopic interventions and could also be implemented in margin assessment during (laparoscopic) cancer surgery if a laparoscopic or handheld OCT device will be further developed to make routine clinical use possible.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Humanos , Oncologia Cirúrgica/métodos
5.
Invest Ophthalmol Vis Sci ; 58(11): 4605-4615, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28892117

RESUMO

Purpose: To use cell motility as a contrast agent in retinal explants. Methods: Macaque and mouse retinal explants were imaged with high resolution full field optical coherence tomography (FFOCT) and dynamic FFOCT, coupled with fluorescence imaging. Results: Static and dynamic FFOCT create complementary contrast from different structures within a cell. When imaging in vitro samples, static FFOCT detects steep refractive index gradients to reveal stationary structures including fibers, vessels, collagen, and cell contours, while dynamic FFOCT emphasizes metabolic activity of moving structures that are mainly intracellular, thus creating or enhancing contrast in cells that were previously hidden in noise. Dynamic FFOCT enables detection of most of the retinal cell types in the ganglion cell, inner and outer nuclear layers, where static FFOCT contrast is too low in relation to the noise background. Conclusions: Composite static and dynamic FFOCT provides a new kind of FFOCT image containing valuable information for imaging of retinal explants. It provides label-free en face images of living retinas, with a subcellular resolution. Dynamic FFOCT adds information about cell activity, which is of interest in longitudinal explant studies.


Assuntos
Movimento Celular/fisiologia , Meios de Contraste , Retina/citologia , Células Ganglionares da Retina/citologia , Tomografia de Coerência Óptica/métodos , Animais , Biomarcadores , Dependovirus/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Macaca , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão , Rodopsina/genética
6.
J Biomed Opt ; 21(2): 26005, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26857471

RESUMO

Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 µm transverse and 6 µm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 m under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.


Assuntos
Endoscopia/métodos , Interferometria/métodos , Microscopia/métodos , Tomografia de Coerência Óptica/métodos , Animais , Biópsia , Encéfalo/patologia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Ratos
7.
Technol Cancer Res Treat ; 15(2): 266-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804544

RESUMO

Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carcinoma Lobular/diagnóstico por imagem , Tomografia de Coerência Óptica , Neoplasias da Mama/patologia , Carcinoma Lobular/secundário , Feminino , Humanos , Metástase Linfática , Biópsia de Linfonodo Sentinela
8.
J Pathol Inform ; 6: 53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605118

RESUMO

BACKGROUND: Full-field optical coherence tomography (FFOCT) is a real-time imaging technique that rapidly generates images reminiscent of histology without any tissue processing, warranting its exploration for evaluation of ex vivo kidney tissue. METHODS: Fresh tissue sections from tumor and adjacent nonneoplastic kidney (n = 25 nephrectomy specimens; clear cell renal cell carcinoma (CCRCC) = 12, papillary RCC (PRCC) = 4, chromophobe RCC (ChRCC) = 4, papillary urothelial carcinoma (PUC) = 1, angiomyolipoma (AML) = 2 and cystic nephroma = 2) were imaged with a commercial FFOCT device. Sections were submitted for routine histopathological diagnosis. RESULTS: Glomeruli, tubules, interstitium, and blood vessels were identified in nonneoplastic tissue. In tumor sections, the normal architecture was completely replaced by either sheets of cells/trabeculae or papillary structures. The former pattern was seen predominantly in CCRCC/ChRCC and the latter in PRCC/PUC (as confirmed on H&E). Although the cellular details were not very prominent at this resolution, we could identify unique cytoplasmic signatures in some kidney tumors. For example, the hyper-intense punctate signal in the cytoplasm of CRCC represents glycogen/lipid, large cells with abundant hyper-intense cytoplasm representing histiocytes in PRCC, and signal-void large polygonal cell representing adipocytes in AML. According to a blinded analysis was performed by an uropathologist, all nonneoplastic tissues were differentiated from neoplastic tissues. Further, all benign tumors were called benign and malignant were called malignant. A diagnostic accuracy of 80% was obtained in subtyping the tumors. CONCLUSION: The ability of FFOCT to reliably differentiate nonneoplastic from neoplastic tissue and identify some tumor types makes it a valuable tool for rapid evaluation of ex vivo kidney tissue e.g. for intraoperative margin assessment and kidney biopsy adequacy. Recently, higher resolution images were achieved using an experimental FFOCT setup. This setup has the potential to further increase the diagnostic accuracy of FFOCT.

9.
Technol Cancer Res Treat ; 13(5): 455-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24000981

RESUMO

We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist's management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 mm3 resolution and 200 mm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively.


Assuntos
Neoplasias da Mama Masculina/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Intraductal não Infiltrante/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Tomografia de Coerência Óptica
10.
J Pathol Inform ; 4: 26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244883

RESUMO

BACKGROUND: Full-field optical coherence tomography (FFOCT) is a real-time imaging technique that generates high-resolution three-dimensional tomographic images from unprocessed and unstained tissues. Lack of tissue processing and associated artifacts, along with the ability to generate large-field images quickly, warrants its exploration as an alternative diagnostic tool. MATERIALS AND METHODS: One section each from the tumor and from adjacent non-neoplastic tissue was collected from 13 human lobectomy specimens. They were imaged fresh with FFOCT and then submitted for routine histopathology. Two blinded pathologists independently rendered diagnoses based on FFOCT images. RESULTS: Normal lung architecture (alveoli, bronchi, pleura and blood vessels) was readily identified with FFOCT. Using FFOCT images alone, the study pathologists were able to correctly identify all tumor specimens and in many cases, the histological subtype of tumor (e.g., adenocarcinomas with various patterns). However, benign diagnosis was provided with high confidence in roughly half the tumor-free specimens (others were diagnosed as equivocal or false positive). Further analysis of these images revealed two major confounding features: (a) Extensive lung collapse and (b) presence of smoker's macrophages. On a closer inspection, however, the smoker's macrophages could often be identified as distinct from tumor cells based on their relative location in the alveoli, size and presence of anthracosis. We posit that greater pathologist experience, complemented with morphometric analysis and color-coding of image components, may help minimize the contribution of these confounders in the future. CONCLUSION: Our study provides evidence for the potential utility of FFOCT in identifying and differentiating lung tumors from non-neoplastic lung tissue. We foresee its potential as an adjunct to intra-surgical frozen section analysis for margin assessment, especially in limited lung resections.

11.
Neuroimage Clin ; 2: 549-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24179806

RESUMO

A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of full-field optical coherence tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1 µm resolution in 3D to a penetration depth of around 200 µm. A 1 cm(2) specimen is scanned at a single depth and processed in about 5 min. This rapid imaging process is non-invasive and requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low-grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells such as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a real-time manner as a label-free non-invasive imaging technique in an intraoperative neurosurgical clinical setting to assess tumorous glial and epileptic margins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA