Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658806

RESUMO

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão Gênica
2.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618957

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinases , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética
3.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353578

RESUMO

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Assuntos
Granuloma , Metabolismo dos Lipídeos , Macrófagos , Sarcoidose , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Sarcoidose/metabolismo , Granuloma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Modelos Animais de Doenças
4.
Lancet Rheumatol ; 6(2): e81-e91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267106

RESUMO

BACKGROUND: Sarcoidosis is an inflammatory condition that can affect various organs and tissues, causing the formation of granulomas and subsequent functional impairment. The origin of sarcoidosis remains unknown and there are few treatment options. Mechanistic target of rapamycin (mTOR) activation is commonly seen in granulomas of patients across different tissues and has been shown to induce sarcoidosis-like granulomas in a mouse model. This study aimed to examine the efficacy and safety of the mTOR inhibitor sirolimus as a treatment for cutaneous sarcoidosis. METHODS: We did a single-centre, randomised study treating patients with persistent and glucocorticoid-refractory cutaneous sarcoidosis with sirolimus at the Vienna General Hospital, Medical University of Vienna (Vienna, Austria). We recruited participants who had persistent, active, and histologically proven cutaneous sarcoidosis. We used an n-of-1 crossover design in a placebo-controlled, double-blind topical treatment period and a subsequent single-arm systemic treatment phase for 4 months in the same participants. Participants initially received either 0·1% topical sirolimus in Vaseline or placebo (Vaseline alone), twice daily. After a washout period, all participants were subsequently administered a 6 mg loading dose followed by 2 mg sirolimus solution orally once daily, aiming to achieve serum concentrations of 6 ng/mL. The primary endpoint was change in the Cutaneous Sarcoidosis Activity and Morphology Index (CSAMI) after topical or systemic treatment. All participants were included in the safety analyses, and patients having completed the respective treatment period (topical treatment or systemic treatment) were included in the primary analyses. Adverse events were assessed at each study visit by clinicians and were categorised according to their correlation with the study drug, severity, seriousness, and expectedness. This study is registered with EudraCT (2017-004930-27) and is now closed. FINDINGS: 16 participants with persistent cutaneous sarcoidosis were enrolled in the study between Sept 3, 2019, and June 15, 2021. Six (37%) of 16 participants were men, ten (63%) were women, and 15 (94%) were White. The median age of participants was 54 years (IQR 48-58). 14 participants were randomly assigned in the topical phase and 2 entered the systemic treatment phase directly. Daily topical treatment did not improve cutaneous lesions (effect estimate -1·213 [95% CI -2·505 to 0·079], p=0·066). Systemic treatment targeting trough serum concentrations of 6 ng/mL resulted in clinical and histological improvement of skin lesions in seven (70%) of ten participants (median -7·0 [95% CI -16·5 to -3·0], p=0·018). Various morphologies of cutaneous sarcoidosis, including papular, nodular, plaque, scar, and tattoo-associated sarcoidosis, responded to systemic sirolimus therapy with a long-lasting effect for more than 1 year after treatment had been stopped. There were no serious adverse events and no deaths. INTERPRETATION: Short-term treatment with systemic sirolimus might be an effective and safe treatment option for patients with persistent glucocorticoid-refractory sarcoidosis with a long-lasting disease-modulating effect. The effect of sirolimus in granulomatous inflammation should be investigated further in large, multi-centre, randomised clinical trials. FUNDING: Vienna Science and Technology Fund, Austrian Science Fund.


Assuntos
Butilaminas , Sarcoidose , Sirolimo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucocorticoides/farmacologia , Granuloma , Vaselina , Sarcoidose/tratamento farmacológico , Sirolimo/efeitos adversos
5.
Neurooncol Adv ; 5(1): vdad136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024240

RESUMO

Background: The prognostic roles of clinical and laboratory markers have been exploited to model risk in patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to determine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular profiles for enhanced risk stratification. Methods: In this retrospective study, we investigated 133 patients across 9 sites in Austria (2005-2018) and an external validation site in South Korea (44 patients, 2013-2016). We used T1-weighted contrast-enhanced MRI and an L1-norm regularized Cox proportional hazard model to derive a radiomic risk score. We integrated radiomic features with DNA methylation profiles using machine learning-based prediction, and validated the most relevant biological associations in tissues and cell lines. Results: The radiomic risk score, consisting of 20 mostly textural features, was a strong and independent predictor of survival (multivariate hazard ratio = 6.56 [3.64-11.81]) that remained valid in the external validation cohort. Radiomic features captured gene regulatory differences such as in BCL6 binding activity, which was put forth as testable treatment target for a subset of patients. Conclusions: The radiomic risk score was a robust and complementary predictor of survival and reflected characteristics in underlying DNA methylation patterns. Leveraging imaging phenotypes to assess risk and inform epigenetic treatment targets provides a concept on which to advance prognostic modeling and precision therapy for this aggressive cancer.

6.
Acta Neurochir (Wien) ; 165(12): 4221-4226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950066

RESUMO

PURPOSE: Extent of resection (EOR) predicts progression-free survival (PFS) and may impact overall survival (OS) in patients with glioblastoma. We recently demonstrated that 5-aminolevulinic acid-(5-ALA)-fluorescence-enhanced endoscopic surgery increase the rate of gross total resection. However, it is hitherto unknown whether fluorescence-enhanced endoscopic resection affects survival. METHODS: We conducted a retrospective single-center analysis of a consecutive series of patients who underwent surgery for non-eloquently located glioblastoma between 2011 and 2018. All patients underwent fluorescence-guided microscopic or fluorescence-guided combined microscopic and endoscopic resection. PFS, OS, EOR as well as clinical and demographic parameters, adjuvant treatment modalities, and molecular characteristics were compared between microscopy-only vs. endoscopy-assisted microsurgical resection. RESULTS: Out of 114 patients, 73 (65%) were male, and 57 (50%) were older than 65 years. Twenty patients (18%) were operated on using additional endoscopic assistance. Both cohorts were equally distributed in terms of age, performance status, lesion location, adjuvant treatment modalities, and molecular status. Gross total resection was achieved in all endoscopy-assisted patients compared to about three-quarters of microscope-only patients (100% vs. 75.9%, p=0.003). The PFS in the endoscope-assisted cohort was 19.3 months (CI95% 10.8-27.7) vs. 10.8 months (CI95% 8.2-13.4; p=0.012) in the microscope-only cohort. OS in the endoscope-assisted group was 28.9 months (CI95% 20.4-34.1) compared to 16.8 months (CI95% 14.0-20.9), in the microscope-only group (p=0.001). CONCLUSION: Endoscope-assisted fluorescence-guided resection of glioblastoma appears to substantially enhance gross total resection and OS. The strong effect size observed herein is contrasted by the limitations in study design. Therefore, prospective validation is required before we can generalize our findings.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Masculino , Feminino , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Microcirurgia , Ácido Aminolevulínico , Endoscópios , Procedimentos Neurocirúrgicos
7.
Cell Metab ; 35(11): 1931-1943.e8, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804836

RESUMO

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.


Assuntos
Poliaminas , Espermina , Camundongos , Animais , Espermina/metabolismo , Poliaminas/metabolismo , Colo , Mucosa Intestinal/metabolismo , Homeostase , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
8.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
9.
Clin Epigenetics ; 15(1): 102, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309009

RESUMO

BACKGROUND: Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease. METHODS: Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS). RESULTS: We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease. CONCLUSIONS: Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Estudos de Casos e Controles , Estudos Prospectivos , Estudos Retrospectivos , Metilação de DNA , Proteínas Nucleares
10.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365178

RESUMO

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Assuntos
Neoplasias da Medula Óssea , Neuroblastoma , Humanos , Criança , Medula Óssea/patologia , Monócitos/metabolismo , Transcriptoma , Epigenômica , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Neoplasias da Medula Óssea/patologia , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
11.
Immunity ; 56(2): 289-306.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36750099

RESUMO

Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.


Assuntos
Sarcoidose , Transcriptoma , Animais , Camundongos , Humanos , Citocinas/metabolismo , Granuloma , Perfilação da Expressão Gênica
12.
Clin Immunol ; 248: 109245, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702179

RESUMO

Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Linhagem da Célula , Epigênese Genética
13.
J Cachexia Sarcopenia Muscle ; 14(1): 93-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36351437

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours. METHODS: MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS: CHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC. CONCLUSIONS: In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.


Assuntos
Caquexia , Interleucina-6 , Neoplasias , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/patologia , Caquexia/patologia , Fibrossarcoma/complicações , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/patologia , Neoplasias/complicações
14.
Sci Signal ; 15(764): eabq5389, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512641

RESUMO

Promoters of antimicrobial genes function as logic boards, integrating signals of innate immune responses. One such set of genes is stimulated by interferon (IFN) signaling, and the expression of these genes [IFN-stimulated genes (ISGs)] can be further modulated by cell stress-induced pathways. Here, we investigated the global effect of stress-induced p38 mitogen-activated protein kinase (MAPK) signaling on the response of macrophages to IFN. In response to cell stress that coincided with IFN exposure, the p38 MAPK-activated transcription factors CREB and c-Jun, in addition to the IFN-activated STAT family of transcription factors, bound to ISGs. In addition, p38 MAPK signaling induced activating histone modifications at the loci of ISGs and stimulated nuclear translocation of the CREB coactivator CRTC3. These actions synergistically enhanced ISG expression. Disrupting this synergy with p38 MAPK inhibitors improved the viability of macrophages infected with Listeria monocytogenes. Our findings uncover a mechanism of transcriptional synergism and highlight the biological consequences of coincident stress-induced p38 MAPK and IFN-stimulated signal transduction.


Assuntos
Interferon gama , Interferons , Interferons/genética , Interferons/farmacologia , Interferons/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fosforilação
15.
Elife ; 112022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154671

RESUMO

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Assuntos
Mesoderma , Crista Neural , Diferenciação Celular/genética , Humanos , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
16.
PLoS Genet ; 18(8): e1010376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994477

RESUMO

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Assuntos
Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Acetilação , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
17.
Front Immunol ; 13: 850494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418991

RESUMO

Chronic rhinosinusitis with nasal polyps is affecting up to 3% of Western populations. About 10% of patients with nasal polyps also suffer from asthma and intolerance to aspirin, a syndrome called aspirin-exacerbated respiratory disease. Although eosinophilic inflammation is predominant in polyps of both diseases, phenotypic differences in the tissue-derived microenvironment, elucidating disease-specific characteristics, have not yet been identified. We sought to obtain detailed information about phenotypic and transcriptional differences in epithelial and immune cells in polyps of aspirin-tolerant and intolerant patients. Cytokine profiles in nasal secretions and serum of patients suffering from aspirin-exacerbated respiratory disease (n = 10) or chronic rhinosinusitis with nasal polyps (n = 9) were assessed using a multiplex mesoscale discovery assay. After enrichment for immune cell subsets by flow cytometry, we performed transcriptomic profiling by employing single-cell RNA sequencing. Aspirin-intolerant patients displayed significantly elevated IL-5 and CCL17 levels in nasal secretions corresponding to a more pronounced eosinophilic type 2 inflammation. Transcriptomic profiling revealed that epithelial and mast cells not only complement one another in terms of gene expression associated with the 15-lipoxygenase pathway but also show a clear type 2-associated inflammatory phenotype as identified by the upregulation of POSTN, CCL26, and IL13 in patients with aspirin-exacerbated respiratory disease. Interestingly, we also observed cellular stress responses indicated by an increase of MTRNR2L12, MTRNR2L8, and NEAT1 across all immune cell subsets in this disease entity. In conclusion, our findings support the hypothesis that epithelial and mast cells act in concert as potential drivers of the pathogenesis of the aspirin-exacerbated respiratory disease.


Assuntos
Asma Induzida por Aspirina , Eosinofilia , Pólipos Nasais , Sinusite , Aspirina/efeitos adversos , Asma Induzida por Aspirina/genética , Asma Induzida por Aspirina/patologia , Doença Crônica , Eosinofilia/patologia , Células Epiteliais/metabolismo , Humanos , Inflamação/patologia , Mastócitos/metabolismo , Pólipos Nasais/metabolismo , Transcriptoma
18.
Clin Epigenetics ; 14(1): 39, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279219

RESUMO

BACKGROUND: This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. METHODS/RESULTS: We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. CONCLUSIONS: We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.


Assuntos
Lipodistrofia , Síndrome Metabólica , Obesidade Mórbida , Metilação de DNA , Epigênese Genética , Humanos , Síndrome Metabólica/genética , Obesidade Mórbida/cirurgia , Fenótipo
19.
Neurosurg Rev ; 45(3): 2339-2347, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35194724

RESUMO

Patients with inoperable glioblastoma (GBM) usually experience worse prognosis compared to those in whom gross total resection (GTR) is achievable. Considering the treatment duration and its side effects identification of patients with survival benefit from treatment is essential to guarantee the best achievable quality of life. The aim of this study was to evaluate the survival benefit from radio-chemotherapy and to identify clinical, molecular, and imaging parameters associated with better outcome in patients with biopsied GBMs. Consecutive patients with inoperable GBM who underwent tumor biopsy at our department from 2005 to 2019 were retrospectively analyzed. All patients had histologically confirmed GBM and were followed up until death. The overall survival (OS) was calculated from date of diagnosis to date of death. Clinical, radiological, and molecular predictors of OS were evaluated. A total of 95 patients with biopsied primary GBM were enrolled in the study. The mean age was 64.3 ± 13.2 years; 56.8% (54/95) were male, and 43.2% (41/95) female. Median OS in the entire cohort was 5.5 months. After stratification for adjuvant treatment, a higher median OS was found in the group with adjuvant treatment (7 months, range 2-88) compared to the group without treatment (1 month, range 1-5) log-rank test, p < 0.0001. Patients with inoperable GBM undergoing biopsy indeed experience a very limited OS. Adjuvant treatment is associated with significantly longer OS compared to patients not receiving treatment and should be considered, especially in younger patients with good clinical condition at presentation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Biópsia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioblastoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
20.
Am J Hematol ; 97(4): 390-400, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35015307

RESUMO

Myeloproliferative neoplasms (MPN) are chronic stem cell disorders characterized by enhanced proliferation of myeloid cells, immune deregulation, and drug resistance. JAK2 somatic mutations drive the disease in 50-60% and CALR mutations in 25-30% of cases. Published data suggest that JAK2-V617F-mutated MPN cells express the resistance-related checkpoint PD-L1. By applying RNA-sequencing on granulocytes of 113 MPN patients, we demonstrate that PD-L1 expression is highest among polycythemia vera patients and that PD-L1 expression correlates with JAK2-V617F mutational burden (R = 0.52; p < .0001). Single nucleotide polymorphism (SNP) arrays showed that chromosome 9p uniparental disomy (UPD) covers both PD-L1 and JAK2 in all MPN patients examined. MPN cells in JAK2-V617F-positive patients expressed higher levels of PD-L1 if 9p UPD was present compared to when it was absent (p < .0001). Moreover, haplotype-based association analyses provided evidence for germline genetic factors at PD-L1 locus contributing to MPN susceptibility independently of the previously described GGCC risk haplotype. We also found that PD-L1 is highly expressed on putative CD34+ CD38- disease-initiating neoplastic stem cells (NSC) in both JAK2 and CALR-mutated MPN. PD-L1 overexpression decreased upon exposure to JAK2 blockers and BRD4-targeting agents, suggesting a role for JAK2-STAT5-signaling and BRD4 in PD-L1 expression. Whether targeting of PD-L1 can overcome NSC resistance in MPN remains to be elucidated in forthcoming studies.


Assuntos
Antígeno B7-H1 , Transtornos Mieloproliferativos , Policitemia Vera , Dissomia Uniparental , Antígeno B7-H1/genética , Proteínas de Ciclo Celular/genética , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Proteínas Nucleares/genética , Policitemia Vera/genética , Fatores de Transcrição , Dissomia Uniparental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA