Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746491

RESUMO

Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57- and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.

2.
J Infect Dis ; 226(4): 595-607, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32939546

RESUMO

BACKGROUND: This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. METHODS: Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. RESULTS: All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. CONCLUSIONS: Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Vacínia , Adenoviridae , Adulto , Anticorpos Antivirais , Humanos , Sorogrupo , Vacínia/induzido quimicamente , Vaccinia virus/genética
3.
Lancet Infect Dis ; 22(1): 110-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529962

RESUMO

BACKGROUND: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. METHODS: This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1-17 years were enrolled in three age cohorts (12-17 years, 4-11 years, and 1-3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1-3 years after placebo injection to 21% (30 of 144) of children aged 4-11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12-17 years and 4-11 years age cohorts after the first and second dose, and pyrexia in the 1-3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12-17 years (9929 ELISA units [EU]/mL [95% CI 8172-12 064]), in 119 (99%) of 120 aged 4-11 years (10 212 EU/mL [8419-12 388]), and in 118 (98%) of 121 aged 1-3 years (22 568 EU/mL [18 426-27 642]). INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1-17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adolescente , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Humanos , Lactente , Injeções Intramusculares , Masculino , Serra Leoa , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
4.
Lancet Infect Dis ; 22(1): 97-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529963

RESUMO

BACKGROUND: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. METHODS: The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1 × 108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant's last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736-6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312-4383]) at 21 days after the second vaccination. INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adulto , Anticorpos Antivirais/imunologia , República Democrática do Congo , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Feminino , Humanos , Imunidade Humoral , Masculino , Serra Leoa , Vacinação/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
5.
NPJ Vaccines ; 6(1): 19, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514756

RESUMO

Natural killer (NK) cells are implicated among immune effectors after vaccination against viral pathogens, including Ebola virus. The two-dose heterologous Ebola virus vaccine regimen, adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo (EBOVAC2 consortium, EU Innovative Medicines Initiative), induces NK cell activation and anti-Ebola glycoprotein (GP) antibody-dependent NK cell activation post-dose 1, which is further elevated post-dose 2. Here, in a multicentre, phase 2 clinical trial (EBL2001), we demonstrate durable ex vivo NK cell activation 180 days after dose 2, with responses enriched in CD56bright NK cells. In vitro antibody-dependent responses to immobilised Ebola GP increased after dose 1, and remained elevated compared to pre-vaccination levels in serum collected 180 days later. Peak NK cell responses were observed post-dose 2 and NK cell IFN-γ responses remained significantly elevated at 180 days post-dose 2. Individual variation in NK cell responses were influenced by both anti-Ebola GP antibody concentrations and intrinsic interindividual differences in NK cell functional capacity. In summary, this study demonstrates durable NK cell responses after Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccination and could inform the immunological evaluation of future iterations of the vaccine regimen and vaccination schedules.

6.
J Infect Dis ; 223(7): 1171-1182, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31821493

RESUMO

BACKGROUND: Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. METHODS: We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom-based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara-BN-Filo vaccine regimen. RESULTS: We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. CONCLUSIONS: These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Vacinas contra Ebola , Doença pelo Vírus Ebola , Células Matadoras Naturais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Vacinação , Proteínas Virais/imunologia
7.
Lancet Infect Dis ; 21(4): 493-506, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217361

RESUMO

BACKGROUND: To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus. METHODS: This randomised, observer-blind, placebo-controlled, phase 2 trial was done at seven hospitals in France and two research centres in the UK. Healthy adults (aged 18-65 years) with no history of Ebola vaccination were enrolled into four cohorts. Participants in cohorts I-III were randomly assigned (1:1:1) using computer-generated randomisation codes into three parallel groups (randomisation for cohorts II and III was stratified by country and age), in which participants were to receive an intramuscular injection of Ad26.ZEBOV on day 1, followed by intramuscular injection of MVA-BN-Filo at either 28 days (28-day interval group), 56 days (56-day interval group), or 84 days (84-day interval group) after the first vaccine. Within these three groups, participants in cohort II (14:1) and cohort III (10:3) were further randomly assigned to receive either Ad26.ZEBOV or placebo on day 1, followed by either MVA-BN-Filo or placebo on days 28, 56, or 84. Participants in cohort IV were randomly assigned (5:1) to receive one dose of either Ad26.ZEBOV or placebo on day 1 for vector shedding assessments. For cohorts II and III, study site personnel, sponsor personnel, and participants were masked to vaccine allocation until all participants in these cohorts had completed the post-MVA-BN-Filo vaccination visit at 6 months or had discontinued the trial, whereas cohort I was open-label. For cohort IV, study site personnel and participants were masked to vaccine allocation until all participants in this cohort had completed the post-vaccination visit at 28 days or had discontinued the trial. The primary outcome, analysed in all participants who had received at least one dose of vaccine or placebo (full analysis set), was the safety and tolerability of the three vaccination regimens, as assessed by participant-reported solicited local and systemic adverse events within 7 days of receiving both vaccines, unsolicited adverse events within 42 days of receiving the MVA-BN-Filo vaccine, and serious adverse events over 365 days of follow-up. The secondary outcome was humoral immunogenicity, as measured by the concentration of Ebola virus glycoprotein-binding antibodies at 21 days after receiving the MVA-BN-Filo vaccine. The secondary outcome was assessed in the per-protocol analysis set. This study is registered at ClinicalTrials.gov, NCT02416453, and EudraCT, 2015-000596-27. FINDINGS: Between June 23, 2015, and April 27, 2016, 423 participants were enrolled: 408 in cohorts I-III were randomly assigned to the 28-day interval group (123 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), the 56-day interval group (124 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), and the 84-day interval group (117 to receive Ad26.ZEBOV and MVA-BN-Filo, and 18 to receive placebo), and 15 participants in cohort IV were assigned to receive Ad26.ZEBOV and MVA-BN-Filo (n=13) or to receive placebo (n=2). 421 (99·5%) participants received at least one dose of vaccine or placebo. The trial was temporarily suspended after two serious neurological adverse events were reported, one of which was considered as possibly related to vaccination, and per-protocol vaccination was disrupted for some participants. Vaccinations were generally well tolerated. Mild or moderate local adverse events (mostly pain) were reported after 206 (62%) of 332 Ad26.ZEBOV vaccinations, 136 (58%) of 236 MVA-BN-Filo vaccinations, and 11 (15%) of 72 placebo injections. Systemic adverse events were reported after 255 (77%) Ad26.ZEBOV vaccinations, 116 (49%) MVA-BN-Filo vaccinations, and 33 (46%) placebo injections, and included mostly mild or moderate fatigue, headache, or myalgia. Unsolicited adverse events occurred after 115 (35%) of 332 Ad26.ZEBOV vaccinations, 81 (34%) of 236 MVA-BN-Filo vaccinations, and 24 (33%) of 72 placebo injections. At 21 days after receiving the MVA-BN-Filo vaccine, geometric mean concentrations of Ebola virus glycoprotein-binding antibodies were 4627 ELISA units (EU)/mL (95% CI 3649-5867) in the 28-day interval group, 10 131 EU/mL (8554-11 999) in the 56-day interval group, and 11 312 mL (9072-14106) in the 84-day interval group, with antibody concentrations persisting at 1149-1205 EU/mL up to day 365. INTERPRETATION: The two-dose heterologous regimen with Ad26.ZEBOV and MVA-BN-Filo was safe, well tolerated, and immunogenic, with humoral and cellular immune responses persisting for 1 year after vaccination. Taken together, these data support the intended prophylactic indication for the vaccine regimen. FUNDING: Innovative Medicines Initiative and Janssen Vaccines & Prevention BV. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra Ebola/efeitos adversos , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Esquemas de Imunização , Imunogenicidade da Vacina , Adolescente , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Coortes , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Feminino , França , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Placebos/efeitos adversos , Reino Unido , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Adulto Jovem
8.
J Clin Invest ; 130(7): 3936-3946, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315287

RESUMO

BACKGROUNDNK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.METHODSThe novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination.RESULTSWe show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10.CONCLUSIONThis study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein.TRIAL REGISTRATIONClinicalTrials.gov NCT02313077.FUNDINGUnited Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Ebolavirus/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética
9.
PLoS Pathog ; 12(7): e1005733, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27403737

RESUMO

After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.


Assuntos
Subpopulações de Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Baço/imunologia , Tripanossomíase Africana/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trypanosoma brucei brucei/imunologia
10.
PLoS Negl Trop Dis ; 9(3): e0003561, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25742307

RESUMO

Extracellular trypanosomes can cause a wide range of diseases and pathological complications in a broad range of mammalian hosts. One common feature of trypanosomosis is the occurrence of anemia, caused by an imbalance between erythropoiesis and red blood cell clearance of aging erythrocytes. In murine models for T. brucei trypanosomosis, anemia is marked by a very sudden non-hemolytic loss of RBCs during the first-peak parasitemia control, followed by a short recovery phase and the subsequent gradual occurrence of an ever-increasing level of anemia. Using a newly developed quantitative pHrodo based in vitro erythrophagocytosis assay, combined with FACS-based ex vivo and in vivo results, we show that activated liver monocytic cells and neutrophils as well as activated splenic macrophages are the main cells involved in the occurrence of the early-stage acute anemia. In addition, we show that trypanosomosis itself leads to a rapid alteration of RBC membrane stability, priming the cells for accelerated phagocytosis.


Assuntos
Anemia/fisiopatologia , Eritrócitos/fisiologia , Medições Luminescentes/métodos , Fagocitose/fisiologia , Tripanossomíase/complicações , Tripanossomíase/fisiopatologia , Anemia/etiologia , Animais , Citometria de Fluxo , Concentração de Íons de Hidrogênio , Fígado/citologia , Fígado/metabolismo , Macrófagos/fisiologia , Camundongos , Monócitos/fisiologia , Parasitemia/fisiopatologia , Baço/fisiologia
11.
PLoS Pathog ; 7(6): e1002089, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738467

RESUMO

African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves.


Assuntos
Apoptose , Linfopoese/imunologia , Células Precursoras de Linfócitos B/imunologia , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Variação Antigênica/imunologia , Medula Óssea/imunologia , Células Cultivadas , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/citologia , Baço/citologia , Baço/imunologia , Trypanosoma brucei brucei/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-20158497

RESUMO

Bovine African trypanosomiasis causes severe economical problems on the African continent and one of the most prominent immunopathological parameters associated with this parasitic infection is anemia. In this report we review the current knowledge of the mechanisms underlying trypanosomiasis-associated anemia. In first instance, the central role of macrophages and particularly their activation state in determining the outcome of the disease (i.e. trypanosusceptibility versus trypanotolerance) will be discussed. In essence, while persistence of classically activated macrophages (M1) contributes to anemia development, switching towards alternatively activated macrophages (M2) alleviates pathology including anemia. Secondly, while parasite-derived glycolipids such as the glycosylphosphatidylinositol (GPI) induce M1, host-derived IL-10 blocks M1-mediated inflammation, promotes M2 development and prevents anemia development. In this context, strategies aimed at inducing the M1 to M2 switch, such as GPI-based treatment, adenoviral delivery of IL-10 and induction of IL-10 producing regulatory T cells will be discussed. Finally, the crucial role of iron-homeostasis in trypanosomiasis-associated anemia development will be documented to stress the analogy with anemia of chronic disease (ACD), hereby providing new insight that might contribute to the treatment of ACD.


Assuntos
Anemia/terapia , Macrófagos/fisiologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/terapia , Anemia/etiologia , Animais , Glicosilfosfatidilinositóis/uso terapêutico , Homeostase , Humanos , Interleucina-10/uso terapêutico , Ferro/metabolismo , Ativação de Macrófagos , Linfócitos T Reguladores/fisiologia , Trypanosoma/imunologia , Trypanosoma/fisiologia , Tripanossomíase Africana/complicações , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA