Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 156: 106581, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776740

RESUMO

Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 µm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.


Assuntos
Benzofenonas , Carboximetilcelulose Sódica , Vidro , Cetonas , Manganês , Nanopartículas , Polietilenoglicóis , Polímeros , Impressão Tridimensional , Staphylococcus aureus , Alicerces Teciduais , Zinco , Porosidade , Benzofenonas/química , Vidro/química , Cetonas/química , Cetonas/farmacologia , Alicerces Teciduais/química , Staphylococcus aureus/efeitos dos fármacos , Carboximetilcelulose Sódica/química , Nanopartículas/química , Zinco/química , Zinco/farmacologia , Polímeros/química , Manganês/química , Polietilenoglicóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Teste de Materiais , Humanos
2.
Dent Mater ; 40(4): 700-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401992

RESUMO

OBJECTIVES: Customization and the production of patient-specific devices, tailoring the unique anatomy of each patient's jaw and facial structures, are the new frontiers in dentistry and maxillofacial surgery. As a technological advancement, additive manufacturing has been applied to produce customized objects based on 3D computerized models. Therefore, this paper presents advances in additive manufacturing strategies for patient-specific devices in diverse dental specialties. METHODS: This paper overviews current 3D printing techniques to fabricate dental and maxillofacial devices. Then, the most recent literature (2018-2023) available in scientific databases reporting advances in 3D-printed patient-specific devices for dental and maxillofacial applications is critically discussed, focusing on the major outcomes, material-related details, and potential clinical advantages. RESULTS: The recent application of 3D-printed customized devices in oral prosthodontics, implantology and maxillofacial surgery, periodontics, orthodontics, and endodontics are presented. Moreover, the potential application of 4D printing as an advanced manufacturing technology and the challenges and future perspectives for additive manufacturing in the dental and maxillofacial area are reported. SIGNIFICANCE: Additive manufacturing techniques have been designed to benefit several areas of dentistry, and the technologies, materials, and devices continue to be optimized. Image-based and accurately printed patient-specific devices to replace, repair, and regenerate dental and maxillofacial structures hold significant potential to maximize the standard of care in dentistry.


Assuntos
Impressão Tridimensional , Prostodontia , Humanos
3.
Micromachines (Basel) ; 14(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241705

RESUMO

The use of titanium and titanium-based alloys in the human body due to their resistance to corrosion, implant ology and dentistry has led to significant progress in promoting new technologies. Regarding their excellent mechanical, physical and biological performance, new titanium alloys with non-toxic elements and long-term performance in the human body are described today. The main compositions of Ti-based alloys and properties comparable to existing classical alloys (C.P. TI, Ti-6Al-4V, Co-Cr-Mo, etc.) are used for medical applications. The addition of non-toxic elements such as Mo, Cu, Si, Zr and Mn also provides benefits, such as reducing the modulus of elasticity, increasing corrosion resistance and improving biocompatibility. In the present study, when choosing Ti-9Mo alloy, aluminum and copper (Cu) elements were added to it. These two alloys were chosen because one element is considered a favorable element for the body (copper) and the other element is harmful to the body (aluminum). By adding the copper alloy element to the Ti-9Mo alloy, the elastic modulus decreases to a minimum value of 97 GPa, and the aluminum alloy element increases the elastic modulus up to 118 GPa. Due to their similar properties, Ti-Mo-Cu alloys are found to be a good optional alloy to use.

4.
Int J Pharm ; 640: 122977, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121495

RESUMO

This study aims to develop sunitinib niosomal formulations and assess their in-vitro anti-cancer efficiency against lung cancer cell line, A549. Sunitinib, a highly effective anticancer drug, was loaded in the niosome with high encapsulation efficiency. Collagen was coated on the surface of the niosome for enhanced cellular uptake and prolonged circulation time. Different formulations were produced, while response surface methodology was utilized to optimize the formulations. The stability of the formulations was evaluated over a 2-month period, revealing the importance of collagen coating. MTT assay demonstrated dose-dependent cytotoxicity for all formulations against lung cancer cells. Scratch assay test suggested antiproliferative efficacy of the formulations. The flow cytometry data confirmed the improved cytotoxicity with enhanced apoptosis rate when different formulations used. The 2D fluorescent images proved the presence of drug-containing niosomes in the tumor cells. The activation of the apoptotic pathway leading to protein synthesis was confirmed using an ELISA assay, which specifically evaluated the presence of cas3 and cas7. The results of this study indicated the antiproliferative efficacy of optimized niosomal formulations and their mechanism of action. Therefore, niosomes could be utilized as a suitable carrier for delivering sunitinib into lung cancer cells, paving the way for future clinical studies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Lipossomos , Sunitinibe , Preparações de Ação Retardada , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
5.
SLAS Technol ; 28(3): 127-141, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804175

RESUMO

Cancer is a critical cause of global human death. Not only are complex approaches to cancer prognosis, accurate diagnosis, and efficient therapeutics concerned, but post-treatments like postsurgical or chemotherapeutical effects are also followed up. The four-dimensional (4D) printing technique has gained attention for its potential applications in cancer therapeutics. It is the next generation of the three-dimensional (3D) printing technique, which facilitates the advanced fabrication of dynamic constructs like programmable shapes, controllable locomotion, and on-demand functions. As is well-known, it is still in the initial stage of cancer applications and requires the insight study of 4D printing. Herein, we present the first effort to report on 4D printing technology in cancer therapeutics. This review will illustrate the mechanisms used to induce the dynamic constructs of 4D printing in cancer management. The recent potential applications of 4D printing in cancer therapeutics will be further detailed, and future perspectives and conclusions will finally be proposed.


Assuntos
Neoplasias , Impressão Tridimensional , Humanos , Impressão , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
6.
Int J Comput Assist Radiol Surg ; 17(12): 2221-2229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35948765

RESUMO

PURPOSE: Atherosclerosis plays a significant role in the initiation of coronary artery aneurysms (CAA). Although the treatment options for this kind of vascular disease are developing, there are challenges and limitations in both selecting and applying sufficient medical solutions. For surgical interventions, that are novel therapies, non-invasive specific patient-based studies could lead to obtaining more promising results. Despite medical and pathological tests, these pre-surgical investigations require special biomedical and computer-aided engineering techniques. In this study, a machine learning (ML) model is proposed for the non-invasive detection of atherosclerotic CAA for the first time. METHODS: The database for study was collected from hemodynamic analysis and computed tomography angiography (CTA) of 80 CAAs from 61 patients, approved by the Institutional Review Board (IRB). The proposed ML model is formulated for learning by a one-class support vector machine (1SVM) that is a field of ML to provide techniques for outlier and anomaly detection. RESULTS: The applied ML algorithms yield reasonable results with high and significant accuracy in designing a procedure for the non-invasive diagnosis of atherosclerotic aneurysms. This proposed method could be employed as a unique artificial intelligence (AI) tool for assurance in clinical decision-making procedures for surgical intervention treatment methods in the future. CONCLUSIONS: The non-invasive diagnosis of the atherosclerotic CAAs, which is one of the vital factors in the accomplishment of endovascular surgeries, is important due to some clinical decisions. Although there is no accurate tool for managing this kind of diagnosis, an ML model that can decrease the probability of endovascular surgical failures, death risk, and post-operational complications is proposed in this study. The model is able to increase the clinical decision accuracy for low-risk selection of treatment options.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Vasos Coronários , Inteligência Artificial , Angiografia por Tomografia Computadorizada/métodos , Aprendizado de Máquina , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia
7.
Biomedicines ; 9(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829766

RESUMO

In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.

8.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922847

RESUMO

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint's tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.

9.
Materials (Basel) ; 14(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804071

RESUMO

Bonded patches are widely used in several industry sectors for repairing damaged plates, cracks in metallic structures, and reinforcement of damaged structures. Composite patches have optimal properties such as high strength-to-weight ratio, easiness in being applied, and high flexibility. Due to recent rapid growth in the aerospace industry, analyses of adhesively bonded patches applicable to repairing cracked structures have become of great significance. In the present study, the fatigue behavior of the aluminum alloy, repaired by a double-sided glass/epoxy composite patch, is studied numerically. More specifically, the effect of applying a double-sided composite patch on the fatigue life improvement of a damaged aluminum 6061-T6 is analyzed. 3D finite element numerical modeling is performed to analyze the fatigue performance of both repaired and unrepaired aluminum plates using the Abaqus package. To determine the fatigue life of the aluminum 6061-T6 plate, first, the hysteresis loop is determined, and afterward, the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted and validated against the available experimental data from the literature. Results reveal that composite patches increase the fatigue life of cracked structures significantly, ranging from 55% to 100% for different applied stresses.

10.
Materials (Basel) ; 14(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498828

RESUMO

The inhomogeneity of the resistance of conducting polypyrrole-coated nylon-Lycra and polyester (PET) fabrics and its effects on surface temperature were investigated through a systematic experimental and numerical work including the optimization of coating conditions to determine the lowest resistivity conductive fabrics and establish a correlation between the fabrication conditions and the efficiency and uniformity of Joule heating in conductive textiles. For this purpose, the effects of plasma pre-treatment and molar concentration analysis of the dopant anthraquinone sulfonic acid (AQSA), oxidant ferric chloride, and monomer pyrrole was carried out to establish the conditions to determine the sample with the lowest electrical resistance for generating heat and model the experiments using the finite element modeling (FEM). Both PET and nylon-Lycra underwent atmospheric plasma treatment to functionalize the fabric surface to improve the binding of the polymer and obtain coatings with reduced resistance. Both fabrics were compared in terms of average electrical resistance for both plasma treated and untreated samples. The plasma treatment induced deep black coatings with lower resistance. Then, heat-generating experiments were conducted on the polypyrrole (PPy) coated fabrics with the lowest resistance using a variable power supply to study the distribution and maximum value of the temperature. The joule heating model was developed to predict the heating of the conductive fabrics via finite element analysis. The model was based on the measured electrical resistance at different zones of the coated fabrics. It was shown that, when the fabric was backed with neoprene insulation, it would heat up quicker and more evenly. The average electrical resistance of the PPy-PET sample used was 190 Ω, and a maximum temperature reading of 43 °C was recorded. The model results exhibited good agreement with thermal camera data.

11.
Polymers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204377

RESUMO

This paper aims to investigate the effects of fiber hybridization technique on the mechanical behaviors of non-absorbable braided composite sutures. Fifteen types of hybrid braided sutures (HBSs) made of polyester (PET), polypropylene (PP), and polyamide 6 (PA6) are produced and tested to measure ultimate tensile strength (UTS), maximum strain, elastic modulus, and breaking toughness. Based on the results, it is observed that the suture material plays a significant role in the tensile and mechanical performance of HBSs, and they can be tailored through the different combinations of yarns according to the required mechanical properties. Experiments exhibit occurrence positive hybrid effect in both maximum strain and elastic modulus, and negative hybrid effect in UTS. The optimal tensile performance is associated with the hybrid structure comprising 75% PA6-12.5% PET-12.5% PP. This means the ternary structure with higher PA6 content along with PP and PET, demonstrates a synergistic effect. Thus, such a ternary composite structure is very promising for the design of novel non-absorbable sutures. Due to the absence of similar results in the specialized literature, this paper is likely to advance the state-of-the-art composite non-absorbable sutures and contribute to a better understanding of the hybridization concept for optimizing composite material systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA