Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373674

RESUMO

The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1's Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1's helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteômica , Compartimentos de Replicação Viral
2.
EMBO Rep ; 22(2): e50803, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369867

RESUMO

Mutations in the nuclear trypsin-like serine protease FAM111A cause Kenny-Caffey syndrome (KCS2) with hypoparathyroidism and skeletal dysplasia or perinatally lethal osteocraniostenosis (OCS). In addition, FAM111A was identified as a restriction factor for certain host range mutants of the SV40 polyomavirus and VACV orthopoxvirus. However, because FAM111A function is poorly characterized, its roles in restricting viral replication and the etiology of KCS2 and OCS remain undefined. We find that FAM111A KCS2 and OCS patient mutants are hyperactive and cytotoxic, inducing apoptosis-like phenotypes such as disruption of nuclear structure and pore distribution, in a protease-dependent manner. Moreover, wild-type FAM111A activity causes similar nuclear phenotypes, including the loss of nuclear barrier function, when SV40 host range mutants attempt to replicate in restrictive cells. Interestingly, pan-caspase inhibitors do not block these FAM111A-induced phenotypes, implying it acts independently or upstream of caspases. In this regard, we identify nucleoporins and the associated GANP transcription/replication factor as FAM111A interactors and candidate targets. Overall, we reveal a potentially unifying mechanism through which deregulated FAM111A activity restricts viral replication and causes KCS2 and OCS.


Assuntos
Doenças do Desenvolvimento Ósseo , Núcleo Celular/patologia , Anormalidades Craniofaciais , Hiperostose Cortical Congênita , Hipoparatireoidismo , Receptores Virais , Humanos , Vírus 40 dos Símios , Replicação Viral
3.
PLoS Genet ; 13(5): e1006776, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475613

RESUMO

The posttranslational modifiers SUMO and ubiquitin critically regulate the DNA damage response (DDR). Important crosstalk between these modifiers at DNA lesions is mediated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitinates SUMO chains to generate SUMO-ubiquitin hybrids. These SUMO-ubiquitin hybrids attract DDR proteins able to bind both modifiers, and/or are degraded at the proteasome. Despite these insights, specific roles for SUMO chains and STUbL in the DDR remain poorly defined. Notably, fission yeast defective in SUMO chain formation exhibit near wild-type resistance to genotoxins and moreover, have a greatly reduced dependency on STUbL activity for DNA repair. Based on these and other data, we propose that a critical role of STUbL is to antagonize DDR-inhibitory SUMO chain formation at DNA lesions. In this regard, we identify a SUMO-binding Swi2/Snf2 translocase called Rrp2 (ScUls1) as a mediator of the DDR defects in STUbL mutant cells. Therefore, in support of our proposal, SUMO chains attract activities that can antagonize STUbL and other DNA repair factors. Finally, we find that Taz1TRF1/TRF2-deficiency triggers extensive telomeric poly-SUMOylation. In this setting STUbL, together with its cofactor Cdc48p97, actually promotes genomic instability caused by the aberrant processing of taz1Δ telomeres by DNA repair factors. In summary, depending on the nature of the initiating DNA lesion, STUbL activity can either be beneficial or harmful.


Assuntos
Instabilidade Genômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina
4.
Cold Spring Harb Protoc ; 2017(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250214

RESUMO

The tandem affinity purification (TAP) method uses an epitope that contains two different affinity purification tags separated by a site-specific protease site to isolate a protein rapidly and easily. Proteins purified via the TAP tag are eluted under mild conditions, allowing them to be used for structural and biochemical analyses. The original TAP tag contains a calmodulin-binding peptide and the IgG-binding domain from protein A separated by a tobacco etch virus (TEV) protease cleavage site. After capturing the Protein A epitope on an IgG resin, bound proteins are released by incubation with the TEV protease and then isolated on a calmodulin matrix in the presence of calcium; elution from this resin is achieved by chelating calcium with EGTA. However, because the robustness of the calmodulin-binding step in this procedure is highly variable, we replaced the calmodulin-binding peptide with three copies of the FLAG epitope, (3× FLAG)-TEV-Protein A, which can be isolated using an anti-FLAG resin. Elution from this matrix is achieved in the presence of an excess of a 3× FLAG peptide. In addition to allowing proteins to be released under mild conditions, elution by the 3× FLAG peptide adds an extra layer of specificity to the TAP procedure, because it liberates only FLAG-tagged proteins.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas Fúngicas/isolamento & purificação , Schizosaccharomyces/química , Coloração e Rotulagem/métodos , Proteínas Fúngicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
5.
Biomolecules ; 6(1): 14, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927199

RESUMO

Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit "effector" proteins such as the AAA⁺ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.


Assuntos
Instabilidade Genômica , Proteína SUMO-1/metabolismo , Ubiquitina/metabolismo , Dano ao DNA , Reparo do DNA , Transdução de Sinais
6.
J Biol Chem ; 290(37): 22678-85, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221037

RESUMO

Covalent modification of the proteome by SUMO is critical for genetic stability and cell growth. Equally crucial to these processes is the removal of SUMO from its targets by the Ulp1 (HuSENP1/2) family of SUMO proteases. Ulp1 activity is normally spatially restricted, because it is localized to the nuclear periphery via interactions with the nuclear pore. Delocalization of Ulp1 causes DNA damage and cell cycle defects, phenotypes thought to be caused by inappropriate desumoylation of nucleoplasmic targets that are normally spatially protected from Ulp1. Here, we define a novel consequence of Ulp1 deregulation, with a major impact on SUMO pathway function. In fission yeast lacking Nup132 (Sc/HuNUP133), Ulp1 is delocalized and can no longer antagonize sumoylation of the PIAS family SUMO E3 ligase, Pli1. Consequently, SUMO chain-modified Pli1 is targeted for proteasomal degradation by the concerted action of a SUMO-targeted ubiquitin ligase (STUbL) and Cdc48-Ufd1-Npl4. Pli1 degradation causes the profound SUMO pathway defects and associated centromere dysfunction in cells lacking Nup132. Thus, perhaps counterintuitively, Ulp1-mediated desumoylation can promote SUMO modification by stabilizing a SUMO E3 ligase.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sumoilação/fisiologia , Cisteína Endopeptidases/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
EMBO Rep ; 15(5): 601-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24714598

RESUMO

The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining.


Assuntos
Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Nucleossomos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Camundongos , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Telômero/efeitos dos fármacos , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação
8.
J Biol Chem ; 287(35): 29610-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22730331

RESUMO

Protein modification by SUMO and ubiquitin critically impacts genome stability via effectors that "read" their signals using SUMO interaction motifs or ubiquitin binding domains, respectively. A novel mixed SUMO and ubiquitin signal is generated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitylates SUMO conjugates. Herein, we determine that the "ubiquitin-selective" segregase Cdc48-Ufd1-Npl4 also binds SUMO via a SUMO interaction motif in Ufd1 and can thus act as a selective receptor for STUbL targets. Indeed, we define key cooperative DNA repair functions for Cdc48-Ufd1-Npl4 and STUbL, thereby revealing a new signaling mechanism involving dual recruitment by SUMO and ubiquitin for Cdc48-Ufd1-Npl4 functions in maintaining genome stability.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica/fisiologia , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Reparo do DNA/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , Ligação Proteica , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/fisiologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina
9.
Trends Biochem Sci ; 33(5): 201-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403209

RESUMO

Ubiquitin and ubiquitin-like proteins (Ubls) share a beta-GRASP fold and have key roles in cellular growth and suppression of genome instability. Despite their common fold, SUMO and ubiquitin are classically portrayed as distinct, and they can have antagonistic roles. Recently, a new family of proteins, the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligases (STUbLs), which directly connect sumoylation and ubiquitylation, has been discovered. Uniquely, STUbLs use SUMO-interaction motifs (SIMs) to recognize their sumoylated targets. STUbLs are global regulators of protein sumoylation levels, and cells lacking STUbLs display genomic instability and hypersensitivity to genotoxic stress. The human STUbL, RNF4, is implicated in several diseases including cancer, highlighting the importance of characterizing the cellular functions of STUbLs.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Ubiquitina/fisiologia , Sequência de Aminoácidos , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Domínios e Motivos de Interação entre Proteínas , Saccharomycetales/fisiologia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
10.
Mol Biol Cell ; 15(11): 4866-76, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15331764

RESUMO

The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.


Assuntos
Meiose , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/ultraestrutura , Reparo do DNA , Raios gama , Deleção de Genes , Immunoblotting , Imunoprecipitação , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Peptídeos/química , Ligação Proteica , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Raios Ultravioleta
11.
J Biol Chem ; 278(46): 45460-7, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12966087

RESUMO

The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.


Assuntos
Proteínas de Ciclo Celular/química , Reparo do DNA , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Alelos , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatografia em Gel , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Dimerização , Relação Dose-Resposta à Radiação , Deleção de Genes , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Peptídeos/química , Fenótipo , Rad51 Recombinase , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Homologia de Sequência de Aminoácidos , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA