Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Res ; 35(4): 346-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687164

RESUMO

The impacts of high-fat diets (HFDs) on the onset of metabolic endotoxemia and low-grade inflammation are well established in rodent models. However, the dose-effect of dietary lipid intakes on these parameters is not known. We hypothesized that increasing dietary lipid amounts could be linked to parallel increases of endotoxemia, low-grade inflammation, and metabolic and intestinal alterations. Six-week-old male C57BL/6J mice were fed a low-fat diet (LFD, 2.6 wt% of lipids), a moderate HFD (mHFD, 22 wt% of lipids), or a very HFD (vHFD, 45 wt% of lipids) formulated mainly using chow ingredients and milk fat. After 12 weeks, white adipose tissues, liver, intestine, distal colon contents, and plasma were collected. Only vHFD mice significantly increased body weight and fat mass vs LFD mice. This was associated with increases of plasma concentrations of triglycerides, leptin and adiponectin, and liver lipids. No such differences were observed between LFD and mHFD mice. However, mHFD developed metabolic endotoxemia and inflammation, unlike vHFD mice. In turn, vHFD mice showed more goblet cells in all intestine segments vs both other groups and a decrease of Bacteroides-Prevotella in their microbiota vs LFD mice. Finally, mHFD mice colon exhibited a decrease in lactobacilli and in the levels of occludin phosphorylation. Altogether, using complex HFD, no associations were observed between dietary lipid amounts and the magnitude of endotoxemia, inflammation, and physiological alterations developed. These results reveal the impact of the diet composition on intestinal goblet cells and mucus coat, bringing new insights about further consequences on HFD-induced metabolic disorders.


Assuntos
Gorduras na Dieta/administração & dosagem , Endotoxemia/fisiopatologia , Células Caliciformes/metabolismo , Inflamação/fisiopatologia , Adiponectina/sangue , Tecido Adiposo Branco/metabolismo , Animais , Colo/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Interleucina-6/sangue , Mucosa Intestinal/metabolismo , Intestinos/citologia , Leptina/sangue , Lipopolissacarídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Triglicerídeos/sangue , Aumento de Peso , Proteína da Zônula de Oclusão-1/metabolismo
2.
Am J Physiol Endocrinol Metab ; 302(3): E374-86, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094473

RESUMO

Low-grade inflammation observed in obesity is a risk factor for cardiovascular disease. Recent studies revealed that this would be linked to gut-derived endotoxemia during fat digestion in high-fat diets, but nothing is known about the effect of lipid composition. The study was designed to test the impact of oil composition of high-fat diets on endotoxin metabolism and inflammation in mice. C57/Bl6 mice were fed for 8 wk with chow or isocaloric isolipidic diets enriched with oils differing in fatty acid composition: milk fat, palm oil, rapeseed oil, or sunflower oil. In vitro, adipocytes (3T3-L1) were stimulated or not with lipopolysaccharide (LPS; endotoxin) and incubated with different fatty acids. In mice, the palm group presented the highest level of IL-6 in plasma (P < 0.01) together with the highest expression in adipose tissue of IL-1ß and of LPS-sensing TLR4 and CD14 (P < 0.05). The higher inflammation in the palm group was correlated with a greater ratio of LPS-binding protein (LBP)/sCD14 in plasma (P < 0.05). The rapeseed group resulted in higher sCD14 than the palm group, which was associated with lower inflammation in both plasma and adipose tissue despite higher plasma endotoxemia. Taken together, our results reveal that the palm oil-based diet resulted in the most active transport of LPS toward tissues via high LBP and low sCD14 and the greatest inflammatory outcomes. In contrast, a rapeseed oil-based diet seemed to result in an endotoxin metabolism driven toward less inflammatory pathways. This shows that dietary fat composition can contribute to modulate the onset of low-grade inflammation through the quality of endotoxin receptors.


Assuntos
Tecido Adiposo Branco/imunologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/etiologia , Doenças Metabólicas/imunologia , Receptores Imunológicos/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas de Transporte/sangue , Citocinas/sangue , Ácidos Graxos Monoinsaturados , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/isolamento & purificação , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Receptores de Lipopolissacarídeos/sangue , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/sangue , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Palmeira , Óleos de Plantas/efeitos adversos , Distribuição Aleatória , Óleo de Brassica napus , Óleo de Girassol , Receptor 4 Toll-Like/metabolismo
3.
Lipids ; 46(12): 1141-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21769692

RESUMO

We previously demonstrated the importance of upregulation of phosphatidylethanolamine N-methylation pathway in euryhaline fish and crustaceans facing hyperosmotic conditions. In marine molluscs phosphatidylcholine synthesis through N-methylation of phosphatidylethanolamine has not been described until now. In vivo labeling of the mussel Mytilus galloprovincialis with [1-(3)H]-ethanolamine showed that the digestive gland is the tissue expressing the highest incorporation into lipids. A sustained increase in lipid labeling was observed up to 72 h following label injection with 79-92% of radioactivity concentrated into phosphatidylethanolamine and phosphatidylcholine. A direct correlation (r = 0.47, p < 0.01) between the specific radioactivities of phosphatidylcholine in plasma and the digestive gland was observed. Moreover, the phosphatidylcholine fatty acid compositions of plasma and the digestive gland were similar but differed from those of phosphatidylcholine purified from other tissues. In vitro incubation of tissues with [1-(3)H]-ethanolamine or L-[3-(3)H]-serine showed that a significant labeling of the choline moiety of phosphatidylcholine was observed in the digestive gland and hemocytes. Pulse-chase experiments with [1-(3)H]-ethanolamine also demonstrated that hemocytes are exchanging the newly formed phospholipids with plasma. Finally, phosphatidylethanolamine N-methyltransferase assays demonstrated salinity-dependent activities in the digestive gland and hemocytes. We conclude that in M. galloprovincialis an active phosphatidylcholine synthesis through N-methylation of phosphatidylethanolamine occurs in the digestive gland and hemocytes and that this newly formed phosphatidylcholine is partly exchanged with plasma.


Assuntos
Organismos Aquáticos/fisiologia , Trato Gastrointestinal/metabolismo , Hemócitos/metabolismo , Mytilus/fisiologia , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/metabolismo , Animais , Etanolamina/metabolismo , Hidrogênio/metabolismo , Metilação , Concentração Osmolar , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Radioisótopos/metabolismo , Água do Mar , Serina/metabolismo
4.
J Comp Neurol ; 514(4): 403-14, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19330822

RESUMO

Brain effects of erythropoietin (Epo) are proposed to involve a heteromeric receptor comprising the classical Epo receptor (Epo-R) and the common beta chain (betac). However, data documenting the pattern of betac gene expression in the healthy brain, in comparison with that of the Epo-R gene, are still lacking. The present study is the first to investigate at the same time betac, Epo-R, and Epo gene expression within different rat brain areas throughout the life span, from neonatal to elderly stages, using quantitative RT-PCR for transcripts. Corresponding proteins were localized by using immunohistochemistry. We demonstrate that the betac transcript level does not correlate with that of Epo-R or Epo, whereas the Epo-R transcript level strongly correlates with that of Epo throughout the life span in all brain structures analyzed. Both Epo and Epo-R were detected primarily in neurons. In the hippocampus, the greatest Epo-R mRNA levels were measured during the early postnatal period and in middle-aged rats, associated with an intense neuronal immunolabeling. Conversely, betac protein was barely detectable in the brain at all ages, even in neurons expressing high levels of Epo-R. Finally, betac transcript could not be detected in PC12 cells, even after nerve growth factor-induced neuritogenesis, which is a condition that dramatically enhances Epo-R transcript level. Altogether, our data suggest that most neurons are likely to express high levels of Epo-R but low, if not null, levels of betac. Given that Epo protects extended populations of neurons after injury, a yet-to-be-identified receptor heterocomplex including Epo-R may exist in the large population of brain neurons that does not express betac.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Eritropoetina/metabolismo , Receptores da Eritropoetina/metabolismo , Envelhecimento/metabolismo , Análise de Variância , Animais , Astrócitos/metabolismo , Expressão Gênica , Imuno-Histoquímica , Masculino , Microglia/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Int J Radiat Oncol Biol Phys ; 73(4): 1211-8, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19251092

RESUMO

PURPOSE: To define which intracellular pools of sphingomyelin and ceramide are involved in the triggering of apoptosis of Jurkat leukemia cells in response to gamma-ray exposure. METHODS AND MATERIALS: We examined the kinetics of ceramide generation at the whole-cell level and in different subcellular compartments (plasma membrane rafts, mitochondria, and endoplasmic reticulum) after irradiation with photons. Ceramide was measured by high-performance liquid chromatography or after pulse labeling experiments, and the presence of sphingomyelinase within mitochondria was assessed by electron microscopy. RESULTS: Irradiation of Jurkat leukemia cells resulted in the sequential triggering of sphingomyelin hydrolysis, followed by de novo synthesis that led to a late ceramide response (from 24 h) correlated with the triggering of apoptosis. At the subcellular level, pulse-label experiments, using [(3)H]-palmitate as a precursor, strengthened the involvement of the radiation-induced sphingomyelin breakdown and revealed a very early peak (15 min) of ceramide in plasma membrane rafts. A second peak in mitochondria was measured 4 h after irradiation, resulting from an increase of the sphingomyelin content relating to the targeting of acid sphingomyelinase toward this organelle. CONCLUSION: These data confirm that ceramide is a major determinant in the triggering of radiation-induced apoptosis and highlight the complexity of the sequential compartment-specific ceramide-mediated response of Jurkat leukemia cells to gamma-rays.


Assuntos
Apoptose/fisiologia , Ceramidas/biossíntese , Células Jurkat/efeitos da radiação , Esfingomielinas/biossíntese , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos da radiação , Raios gama , Humanos , Hidrólise , Células Jurkat/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Palmitatos , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Tempo
6.
Blood Cells Mol Dis ; 33(1): 77-82, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15223015

RESUMO

Gaucher disease is caused by defective activity of acid-beta-glucosidase (GlcCerase), resulting in accumulation of glucosylceramide (GlcCer) mainly in macrophages. We now demonstrate that secondary biochemical pathways regulating levels of phospholipid metabolism are altered in a Gaucher disease macrophage model. Upon treatment of macrophages with the GlcCerase inhibitor, conduritol-B-epoxide, phosphatidylcholine (PC) labeling with the metabolic precursor, [methyl-14C]choline, was elevated after 6 or 12 days in macrophages but not in lymphocytes. These changes correlated with increases in the cytoplasmic/nuclear ratio and with levels of [3H]GlcCer accumulation. Moreover, metabolic labeling with L-[3-3H]serine and L-[methyl-3H]methionine demonstrated that PC synthesis via the methylation of phosphatidylethanolamine is also increased in CBE-treated macrophages. Since PC is a major structural component of biological membranes and the source of various second messengers, we suggest that changes in its metabolism in macrophages may be relevant for understanding Gaucher disease pathology.


Assuntos
Doença de Gaucher/metabolismo , Inositol/análogos & derivados , Linfócitos/metabolismo , Macrófagos/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Isótopos de Carbono , Núcleo Celular/química , Citoplasma/química , Deutério , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidas/metabolismo , Humanos , Inositol/farmacologia , Macrófagos/patologia , Modelos Biológicos , Monócitos/citologia , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA