Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 92(5): 707-24, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23643381

RESUMO

Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs.


Assuntos
Surdez/genética , Predisposição Genética para Doença/genética , Síndrome de Kallmann/genética , Neuroglia/patologia , Condutos Olfatórios/patologia , Fatores de Transcrição SOXE/genética , Animais , Análise Mutacional de DNA , Surdez/patologia , Feminino , França , Galactosídeos , Células HeLa , Humanos , Indóis , Síndrome de Kallmann/patologia , Masculino , Camundongos , Mutação/genética , Plasmídeos/genética
2.
Hum Mol Genet ; 22(12): 2387-99, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23427148

RESUMO

Goldberg-Shprintzen syndrome (GOSHS, MIM #609460) is an autosomal recessive disorder of intellectual disability, specific facial gestalt and Hirschsprung's disease (HSCR). In 2005, homozygosity mapping in a large consanguineous family identified KIAA1279 as the disease-causing gene. KIAA1279 encodes KIF-binding protein (KBP), whose function is incompletely understood. Studies have identified either the mitochondria or the cytoskeleton as the site of KBP localization and interactions. To better delineate the KIAA1279-related clinical spectrum and the molecular mechanisms involved in GOSHS, we studied five new patients from three different families. The homozygous KIAA1279 mutations in these patients (p.Arg90X, p.Ser200X or p.Arg202IlefsX2) led to nonsense-mediated mRNA decay and loss of KBP function. Despite the absence of functional KBP, respiratory chain complex activity in patient fibroblasts was normal. KBP did not co-localize with mitochondria in control human fibroblasts, but interacted with the actin and tubulin cytoskeleton. KBP expression directly affected neurite growth in a neuron-like cell line (human neuroblastoma SH-SY5Y), in keeping with the central (polymicrogyria) and enteric (HSCR) neuronal developmental defects seen in GOSHS patients. The KBP interactions with actin filaments and microtubules (MTs) demonstrated in our study constitute the first evidence that an actin MT cross-link protein is involved in neuronal development in humans.


Assuntos
Anormalidades Craniofaciais/metabolismo , Doença de Hirschsprung/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Actinas/genética , Actinas/metabolismo , Adolescente , Adulto , Criança , Anormalidades Craniofaciais/genética , Feminino , França , Doença de Hirschsprung/genética , Humanos , Lactente , Iraque , Masculino , Microtúbulos/genética , Mutação , Proteínas do Tecido Nervoso/genética , Linhagem , Ligação Proteica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA