Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Reprod Infertil ; 25(2): 110-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157795

RESUMO

Background: Several approaches have been proposed to optimize the construction of an artificial intelligence-based model for assessing ploidy status. These encompass the investigation of algorithms, refining image segmentation techniques, and discerning essential patterns throughout embryonic development. The purpose of the current study was to evaluate the effectiveness of using U-NET architecture for embryo segmentation and time-lapse embryo image sequence extraction, three and ten hr before biopsy to improve model accuracy for prediction of embryonic ploidy status. Methods: A total of 1.020 time-lapse videos of blastocysts with known ploidy status were used to construct a convolutional neural network (CNN)-based model for ploidy detection. Sequential images of each blastocyst were extracted from the time-lapse videos over a period of three and ten hr prior to the biopsy, generating 31.642 and 99.324 blastocyst images, respectively. U-NET architecture was applied for blastocyst image segmentation before its implementation in CNN-based model development. Results: The accuracy of ploidy prediction model without applying the U-NET segmented sequential embryo images was 0.59 and 0.63 over a period of three and ten hr before biopsy, respectively. Improved model accuracy of 0.61 and 0.66 was achieved, respectively with the implementation of U-NET architecture for embryo segmentation on the current model. Extracting blastocyst images over a 10 hr period yields higher accuracy compared to a three-hr extraction period prior to biopsy. Conclusion: Combined implementation of U-NET architecture for blastocyst image segmentation and the sequential compilation of ten hr of time-lapse blastocyst images could yield a CNN-based model with improved accuracy in predicting ploidy status.

2.
J Gynecol Obstet Hum Reprod ; 53(8): 102808, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825167

RESUMO

OBJECTIVE: The presence of embryonic cell-free DNA (cfDNA) in spent embryo culture media (SECM) may offer valuable advantages for non-invasive testing of embryo ploidy or genetic characteristics compared to trophectoderm (TE) biopsy. This study aimed to assess the diagnostic potential of SECM cfDNA as a non-invasive sample for chromosomal copy number testing in blastocysts within the clinical setting of in-vitro fertilization. METHOD: This prospective observational study collected 28 SECM cfDNA samples matched with TE biopsy samples from 21 infertile couples who underwent IVF-PGT-A cycles. SECM samples were obtained from blastocysts that were cultured for approximately 5/6 days in an uninterrupted time-lapse incubator. Both sets of samples were collected during the biopsy procedure. The Variseq Illumina platform was utilized for ploidy measurement. The study evaluated the informativity and interpretability of SECM cfDNA, concordance of general ploidy status, and sex chromosome agreement between the two sample types. RESULTS: SECM cfDNA had a high informativity rate (100 %) after double amplification procedure, with a result interpretability of 93 %. Two out of the 28 SECM cfDNA samples were uninterpretable and regarded as overall noise samples. The diagnostic potential of SECM cfDNA, when compared to TE biopsy the standard reference, was relatively low at 50 %. Maternal DNA contamination remains the major obstacle that hinders the widespread clinical adoption of SECM cfDNA in the routine practice of pre-implantation genetic testing for aneuploidy within IVF settings. CONCLUSION: A significant modification must be implemented in the IVF laboratory to minimize DNA contamination and this necessitates suggesting adjustments to oocyte denudation, embryo culture media preparation, and sample collection procedures.


Assuntos
Aneuploidia , Ácidos Nucleicos Livres , Meios de Cultura , Técnicas de Cultura Embrionária , Testes Genéticos , Diagnóstico Pré-Implantação , Humanos , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/sangue , Feminino , Diagnóstico Pré-Implantação/métodos , Diagnóstico Pré-Implantação/normas , Técnicas de Cultura Embrionária/métodos , Estudos Prospectivos , Adulto , Testes Genéticos/métodos , Testes Genéticos/normas , Fertilização in vitro/métodos , Blastocisto , Reprodutibilidade dos Testes , Masculino , Gravidez
3.
Clin Exp Reprod Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757276

RESUMO

Objective: Ovarian tissue vitrification is widely utilized for fertility preservation in prepubertal and adolescent female patients with cancer. The current literature includes reports of successful pregnancy and live birth following autografting. However, the effects of the vitrification process on cumulus-mural granulosa cells (C-mGCs)-somatic cells in ovarian tissue crucial for oocyte maturation and early embryonic development-remain unclear. This study was conducted to explore the impact of vitrification on the cellular function of C-mGCs by quantifying the expression of growth differentiation factor 9 (GDF-9), bone morphogenetic protein 15 (BMP-15), follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), connexin 37, survivin, and caspase 3. Methods: Mature and immature C-mGCs were obtained from 38 women with polycystic ovary syndrome who participated in an in vitro fertilization program. The C-mGCs were then divided into two groups: fresh and vitrified. The expression levels of target genes were assessed using real-time quantitative polymerase chain reaction. Results: After vitrification, GDF-9 expression was significantly decreased among both mature and immature C-mGCs, with 0.2- and 0.1-fold changes, respectively (p<0.01). Similarly, FSHR expression in the mature and immature groups was reduced by 0.1- and 0.02-fold, respectively, following vitrification (p<0.01). The expression levels of the other genes, including BMP-15, LHR, connexin 37, survivin, and caspase 3, remained similar across the examined groups (p>0.05). Conclusion: Vitrification may compromise oocyte maturation through reduced GDF-9 and FSHR expression in C-mGCs after warming.

4.
AJOG Glob Rep ; 3(3): 100209, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645653

RESUMO

BACKGROUND: Preimplantation genetic testing for aneuploidy has been proven to be effective in determining the embryo's chromosomal or ploidy status. The test requires a biopsy of embryonic cells on day 3, 5, or 6 from which complete information on the chromosomes would be obtained. The main drawbacks of preimplantation genetic testing for aneuploidy include its relatively invasive approach and the lack of research studies on the long-term effects of preimplantation genetic testing for aneuploidy. OBJECTIVE: Computer-assisted predictive modeling through machine learning and deep learning algorithms has been proposed to minimize the use of invasive preimplantation genetic testing for aneuploidy. The capability to predict morphologic characteristics of embryo ploidy status creates a meaningful support system for decision-making before further treatment. STUDY DESIGN: Image processing is a component in developing a predictive model specialized in image classification through which a model is able to differentiate images based on unique features. Image processing is obtained through image augmentation to capture segmented embryos and perform feature extraction. Furthermore, multiple machine learning and deep learning algorithms were used to create prediction-based modeling, and all of the prediction models undergo similar model performance assessments to determine the best model prediction algorithm. RESULTS: An efficient artificial intelligence model that can predict embryo ploidy status was developed using image processing through a histogram of oriented gradient and then followed by principal component analysis. The gradient boosting algorithm showed an advantage against other algorithms and yielded an accuracy of 0.74, an aneuploid precision of 0.83, and an aneuploid predictive value (recall) of 0.84. CONCLUSION: This research study proved that machine-assisted technology perceives the embryo differently than human observation and determined that further research on in vitro fertilization is needed. The study finding serves as a basis for developing a better computer-assisted prediction model.

5.
JMIR Res Protoc ; 11(8): e37942, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943784

RESUMO

BACKGROUND: Mesh-augmented surgery with polypropylene meshes (PPMs) is often used in urogynecology and pelvic reconstructive surgery. However, the various complications that arise from its integration process have resulted in a decrease in the number of mesh-augmented surgeries performed worldwide. An approach to improving mesh-tissue integration is coating PPMs with anti-inflammatory and wound-healing molecules, such as platelet-rich plasma (PRP), which is a component of biotechnologies that are capable of accelerating wound healing. Estrogen is also known to have a beneficial effect on wound remodeling; therefore, a hypoestrogenic status may have negative implications for wound healing. The mechanism of how PRP plays a role in wound remodeling, especially among individuals in a hypoestrogenic state, has not been fully described until now. OBJECTIVE: Our aim is to investigate the impact of applying PRP to PPMs in hypoestrogenic rabbit models. METHODS: Our study will be a randomized controlled trial involving hypoestrogenic rabbit models. Samples were categorized into either the PRP group or the PPM group (1:1 ratio), with a minimum sample size of 16 in each arm, via simple random sampling. All samples were put into a hypoestrogenic state via bilateral oophorectomy. After confirming a decrease in estradiol level, the meshes were implanted in the vesicovaginal space. The samples were euthanized on the 14th, 28th, or 90th day of the surgery. The mesh-tissue integration process will be analyzed based on inflammatory parameters (inflammatory infiltrate, interleukin-17, and interleukin-1B expression); angiogenesis (CD31 expression); and collagen deposition, which will be assessed by using Masson trichrome staining. RESULTS: Our study is in the protocol development stage. A preliminary study regarding its feasibility, including the feasibility of the preparation of hypoestrogenic rabbit models, mesh implantation in the rabbits' vesicovaginal spaces, the PRP and amnion scaffold, started in February 2022. The results of our study are expected to be available by the end of 2022. CONCLUSIONS: Our randomized controlled trial is designed to provide high-quality evidence on the effect of applying a PRP-decellularized amnion scaffold to PPMs in the vesicovaginal spaces of hypoestrogenic rabbit models. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/37942.

6.
Arch Gynecol Obstet ; 306(1): 259-265, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35224652

RESUMO

PURPOSE: This pilot study aimed to evaluate the potential synergistic role of three-dimensional power Doppler angiography ultrasound and the expression of Leukemia Inhibitory Factor (LIF) protein in predicting the endometrial receptivity of fresh In-Vitro Fertilization (IVF) cycles. MATERIALS AND METHODS: This prognostic cohort study involved 29 good prognosis women who underwent fresh IVF cycles with fresh blastocysts transfer. Serial measurements of sub-endometrial parameters including vascularity index (VI), flow index (FI), and vascularization flow index (VFI) were conducted consecutively via power Doppler angiography on the day of oocyte maturation trigger, oocyte retrieval, and blastocyst transfer. Aspiration of endometrial secretion was performed on the day of embryo transfer. RESULTS: The mean index of VI and VFI on the trigger and oocyte retrieval day and also LIF protein concentration at the window of implantation were significantly higher in clinically pregnant women than that of the non-pregnant women (p < 0.05). The area under the curve (AUC) of VI and VFI was shown to have a powerful predictive value to forecast receptive endometrium on either trigger day (0.788 and 0.813, respectively) or oocyte retrieval day (0.813 and 0.818). Likewise, LIF concentration on the day of embryo transfer was adequate to become a predictor for endometrial receptivity (AUC 0.874). A combination of the VI and VFI on the trigger day and LIF concentration at specific cut-off values (VI > 5.381, VFI > 1.483, LIF 703.5 pg/mL) produced an algorithm with high AUC (0.881) and high specificity (94.4%) for an adequate prediction of non-receptive endometrium. CONCLUSION: VI and VFI index assessed on maturation trigger day and the expression of LIF protein concentration at the window of implantation provided sufficient information to predict endometrial receptivity. A large randomized control trial is needed to validate these findings.


Assuntos
Endométrio , Fertilização in vitro , Angiografia , Estudos de Coortes , Endométrio/diagnóstico por imagem , Feminino , Fertilização in vitro/métodos , Humanos , Fator Inibidor de Leucemia , Projetos Piloto , Ultrassonografia Doppler/métodos
7.
Braz. arch. biol. technol ; 63: e20180379, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132267

RESUMO

Abstract Hippocampus is a part of the brain that has a major role in spatial learning and memory which can be affected by herbal extracts. Incense resin (Styrax benzoin) has been used by local communities to improve intelligence. However, there is no scientific evidence of the functions of Styrax benzoin for regulating hippocampal function. The aim of this study was intended to analyze and investigate the effect of incense resin on learning, memory, and dendrite complexity of mice. Three months old male Deutch Democratic Yokohama (DDY) mice were injected orally with graded doses of 100, 150, and 200 mg/kg of incense resin aqueous extract daily for 30 days. Spatial learning and memory performance levels were tested with Y-maze alternation, novel object recognition, and Morris water maze. The branches and maximum dendritic span in the dentate gyrus were observed by the Golgi-Cox staining. Overall, our results showed that incense resin extract increased learning and memory ability, and the number of dendrite branching in the dentate gyrus.


Assuntos
Animais , Masculino , Camundongos , Células Dendríticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Styrax/química , Aprendizagem Espacial/efeitos dos fármacos , Memória/efeitos dos fármacos , Administração Oral , Aprendizagem em Labirinto/efeitos dos fármacos
8.
Clin Exp Reprod Med ; 46(4): 152-165, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813207

RESUMO

OBJECTIVE: This study aimed to examine the effect of vitrification on apoptosis and survival in human preantral follicles after thawing. METHODS: This experimental study was conducted at an acute tertiary care hospital from March 2012 to April 2013. Ovaries were sliced into 5×5×1-mm pieces and divided into the following three groups: preantral follicle isolation, ovarian tissue vitrification-warming followed by follicle isolation, and immunohistochemistry of fresh ovarian tissue. For statistical analyses, the Student t-test, chi-square test, Kruskal-Wallis test, and Kaplan-Meier survival analysis were used. RESULTS: A total of 161 preantral follicles (70% secondary) were collected from ovarian cortex tissue of six women between 30 and 37 years of age who underwent oophorectomy due to cervical cancer or breast cancer. There were no significant differences in the follicular morphology of fresh preantral follicles and vitrified follicles after thawing. The mean Fas ligand (FasL) mRNA expression level was 0.43±0.20 (relative to ß-actin) in fresh preantral follicles versus 0.51±0.20 in vitrified follicles (p=0.22). The mean caspase-3 mRNA expression level in fresh preantral follicles was 0.56±0.49 vs. 0.27±0.21 in vitrified follicles (p=0.233). One vitrified-thawed secondary follicle grew and developed to an antral follicle within 6 days of culture. CONCLUSION: Vitrification did not affect preantral follicle morphology or mRNA expression of the apoptosis markers FasL and caspase-3. Further studies are required to establish whether vitrification affects the outcomes of in vitro culture and the maturation of preantral follicles.

9.
Int J Biomater ; 2019: 8798351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941179

RESUMO

A stable repaired fracture is the key factor responsible for the recovery of a damaged bone. The iron-based implant is one of the biodegradable metals that have been proven safe as a fracture fixation device. The objective of our experimental approach was to examine the potential of the iron-based implant as a biodegradable metal in tibia shaft fracture in sheep chronically. The samples used for this experiment were iron-based and stainless steel implants. Each had a diameter of 5 mm. These samples were analyzed through 3 phases which are material characterization, in vitro and in vivo examination. The samples were examined using a scanning electron microscope with energy dispersive spectrometer and X-ray diffraction. Based on the analysis carried out, the samples contained 90,02% and 60,81% Fe for iron-based implant and stainless implant, respectively. Both implants maintained high viability when being in contact with calf pulmonary artery endothelial cells, indicating that both implants had a minimum response to the cell in a hemocytometer and methyl tetrazolium (MTT) assay. The systemic effect of the implants was observed using hematology and blood chemistry examination. Data collection also shows that both implants also had a minimum response to the erythrocytes, leucocytes, blood chemistry, and blood mineral during the period of observation. Therefore, it could be concluded that the iron-based implant is tolerable for a period of 9 months. It also has the potential to be used as a biodegradable orthopedic implant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA