Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167450, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111631

RESUMO

Defense against intracellular acidification of breast cancer tissue depends on net acid extrusion via Na+,HCO3--cotransporter NBCn1/Slc4a7 and Na+/H+-exchanger NHE1/Slc9a1. NBCn1 is increasingly recognized as breast cancer susceptibility protein and promising therapeutic target, whereas evidence for targeting NHE1 is discordant. Currently, selective small molecule inhibitors exist against NHE1 but not NBCn1. Cellular assays-with some discrepancies-link NHE1 activity to proliferation, migration, and invasion; and disrupted NHE1 expression can reduce triple-negative breast cancer growth. Studies on human breast cancer tissue associate high NHE1 expression with reduced metastasis and-in some molecular subtypes-improved patient survival. Here, we evaluate Na+/H+-exchange and therapeutic potential of the NHE1 inhibitor cariporide/HOE-642 in murine ErbB2-driven breast cancer. Ex vivo, cariporide inhibits net acid extrusion in breast cancer tissue (IC50 = 0.18 µM) and causes small decreases in steady-state intracellular pH (pHi). In vivo, we deliver cariporide orally, by osmotic minipumps, and by intra- and peritumoral injections to address the low oral bioavailability and fast metabolism. Prolonged cariporide administration in vivo upregulates NBCn1 expression, shifts pHi regulation towards CO2/HCO3--dependent mechanisms, and shows no net effect on the growth rate of ErbB2-driven primary breast carcinomas. Cariporide also does not influence proliferation markers in breast cancer tissue. Oral, but not parenteral, cariporide elevates serum glucose by ∼1.5 mM. In conclusion, acute administration of cariporide ex vivo powerfully inhibits net acid extrusion from breast cancer tissue but lowers steady-state pHi minimally. Prolonged cariporide administration in vivo is compensated via NBCn1 and we observe no discernible effect on growth of ErbB2-driven breast carcinomas.


Assuntos
Neoplasias da Mama , Proliferação de Células , Guanidinas , Receptor ErbB-2 , Trocador 1 de Sódio-Hidrogênio , Sulfonas , Guanidinas/farmacologia , Feminino , Animais , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/genética , Camundongos , Humanos , Sulfonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio
2.
Am J Physiol Cell Physiol ; 326(6): C1625-C1636, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646790

RESUMO

NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.


Assuntos
Adesão Celular , Movimento Celular , Proliferação de Células , Colo , Enterócitos , Simportadores de Sódio-Bicarbonato , Humanos , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Animais , Concentração de Íons de Hidrogênio , Células CACO-2 , Colo/metabolismo , Colo/patologia , Enterócitos/metabolismo , Camundongos , Camundongos Knockout , Diferenciação Celular , Camundongos Endogâmicos C57BL
3.
Cell Metab ; 36(3): 461-462, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447528

RESUMO

Cancer metabolism produces large fluxes of lactate and H+, which are extruded by membrane transporters. However, H+ production and extrusion must be coupled by diffusion, facilitated by mobile buffers. Yan et al. propose that carnosine, generated by CARNS2, provides this mobile buffering and enables lysosomal functions that block T cell surveillance.


Assuntos
Carnosina , Carnosina/farmacologia , Linfócitos T , Ácido Láctico , Proteínas de Membrana Transportadoras
4.
Br J Cancer ; 130(7): 1206-1220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310186

RESUMO

BACKGROUND: Na+,HCO3--cotransporter NBCn1/Slc4a7 accelerates murine breast carcinogenesis. Lack of specific pharmacological tools previously restricted therapeutic targeting of NBCn1 and identification of NBCn1-dependent functions in human breast cancer. METHODS: We develop extracellularly-targeted anti-NBCn1 antibodies, screen for functional activity on cells, and evaluate (a) mechanisms of intracellular pH regulation in human primary breast carcinomas, (b) proliferation, cell death, and tumor growth consequences of NBCn1 in triple-negative breast cancer, and (c) association of NBCn1-mediated Na+,HCO3--cotransport with human breast cancer metastasis. RESULTS: We identify high-affinity (KD ≈ 0.14 nM) anti-NBCn1 antibodies that block human NBCn1-mediated Na+,HCO3--cotransport in cells, without cross-reactivity towards human NBCe1 or murine NBCn1. These anti-NBCn1 antibodies abolish Na+,HCO3--cotransport activity in freshly isolated primary organoids from human breast carcinomas and lower net acid extrusion effectively in primary breast cancer tissue from patients with macrometastases in axillary lymph nodes. Inhibitory anti-NBCn1 antibodies decelerate tumor growth in vivo by ~50% in a patient-derived xenograft model of triple-negative breast cancer and pH-dependently reduce colony formation, cause G2/M-phase cell cycle accumulation, and increase apoptosis of metastatic triple-negative breast cancer cells in vitro. CONCLUSIONS: Inhibitory anti-NBCn1 antibodies block net acid extrusion in human breast cancer tissue, particularly from patients with disseminated disease, and pH-dependently limit triple-negative breast cancer growth.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/genética , Apoptose , Concentração de Íons de Hidrogênio , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo
5.
Nat Rev Cancer ; 23(12): 825-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884609

RESUMO

Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.


Assuntos
Neoplasias , Prótons , Humanos , Neoplasias/patologia , Concentração de Íons de Hidrogênio , Ácido Láctico , Microambiente Tumoral/fisiologia
6.
Breast Cancer Res ; 25(1): 46, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098526

RESUMO

BACKGROUND: Carbonic anhydrases catalyze CO2/HCO3- buffer reactions with implications for effective H+ mobility, pH dynamics, and cellular acid-base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear. METHODS: We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas. RESULTS: Carbonic anhydrases-particularly the extracellular isoforms CA4, CA6, CA9, CA12, and CA14-undergo potent expression changes during human and murine breast carcinogenesis. In patients with basal-like/triple-negative breast cancer, elevated expression of the extracellular carbonic anhydrases negatively predicts survival, whereas, surprisingly, the extracellular carbonic anhydrases positively predict patient survival in HER2/ErbB2-enriched breast cancer. Carbonic anhydrase inhibition attenuates cellular net acid extrusion and extracellular H+ elimination from diffusion-restricted to peripheral and well-perfused regions of human and murine breast cancer tissue. Supplied in vivo, the carbonic anhydrase inhibitor acetazolamide acidifies the microenvironment of ErbB2-induced murine breast carcinomas, limits tumor immune infiltration (CD3+ T cells, CD19+ B cells, F4/80+ macrophages), lowers inflammatory cytokine (Il1a, Il1b, Il6) and transcription factor (Nfkb1) expression, and accelerates tumor growth. Supporting the immunomodulatory influences of carbonic anhydrases, patient survival benefits associated with high extracellular carbonic anhydrase expression in HER2-enriched breast carcinomas depend on the tumor inflammatory profile. Acetazolamide lowers lactate levels in breast tissue and blood without influencing breast tumor perfusion, suggesting that carbonic anhydrase inhibition lowers fermentative glycolysis. CONCLUSIONS: We conclude that carbonic anhydrases (a) elevate pH in breast carcinomas by accelerating net H+ elimination from cancer cells and across the interstitial space and (b) raise immune infiltration and inflammation in ErbB2/HER2-driven breast carcinomas, restricting tumor growth and improving patient survival.


Assuntos
Anidrases Carbônicas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Acetazolamida/farmacologia , Microambiente Tumoral/genética , Proteômica , Concentração de Íons de Hidrogênio , Antígenos de Neoplasias/genética , Receptor ErbB-2
7.
Br J Cancer ; 127(7): 1226-1238, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821297

RESUMO

BACKGROUND: While cellular metabolism and acidic waste handling accelerate during breast carcinogenesis, temporal patterns of acid-base regulation and underlying molecular mechanisms responding to the tumour microenvironment remain unclear. METHODS: We explore data from human cohorts and experimentally investigate transgenic mice to evaluate the putative extracellular HCO3--sensor Receptor Protein Tyrosine Phosphatase (RPTP)γ during breast carcinogenesis. RESULTS: RPTPγ expression declines during human breast carcinogenesis and particularly in high-malignancy grade breast cancer. Low RPTPγ expression associates with poor prognosis in women with Luminal A or Basal-like breast cancer. RPTPγ knockout in mice favours premalignant changes in macroscopically normal breast tissue, accelerates primary breast cancer development, promotes malignant breast cancer histopathologies, and shortens recurrence-free survival. In RPTPγ knockout mice, expression of Na+,HCO3--cotransporter NBCn1-a breast cancer susceptibility protein-is upregulated in normal breast tissue but, contrary to wild-type mice, shows no further increase during breast carcinogenesis. Associated augmentation of Na+,HCO3--cotransport in normal breast tissue from RPTPγ knockout mice elevates steady-state intracellular pH, which has known pro-proliferative effects. CONCLUSIONS: Loss of RPTPγ accelerates cellular net acid extrusion and elevates NBCn1 expression in breast tissue. As these effects precede neoplastic manifestations in histopathology, we propose that RPTPγ-dependent enhancement of Na+,HCO3--cotransport primes breast tissue for cancer development.


Assuntos
Neoplasias da Mama , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Recidiva Local de Neoplasia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/fisiologia , Microambiente Tumoral
8.
Int J Cancer ; 151(7): 1150-1165, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35657342

RESUMO

Intracellular Ca2+ dynamics shape malignant behaviors of cancer cells. Whereas previous studies focused on cultured cancer cells, we here used breast organoids and colonic crypts freshly isolated from human and murine surgical biopsies. We performed fluorescence microscopy to evaluate intracellular Ca2+ concentrations in breast and colon cancer tissue with preferential focus on intracellular Ca2+ release in response to purinergic and cholinergic stimuli. Inhibition of the sarco-/endoplasmic reticulum Ca2+ ATPase with cyclopiazonic acid elicited larger Ca2+ responses in breast cancer tissue, but not in colon cancer tissue, relative to respective normal tissue. The resting intracellular Ca2+ concentration was elevated, and ATP, UTP and acetylcholine induced strongly augmented intracellular Ca2+ responses in breast cancer tissue compared with normal breast tissue. In contrast, resting intracellular Ca2+ levels and acetylcholine-induced increases in intracellular Ca2+ concentrations were unaffected and ATP- and UTP-induced Ca2+ responses were smaller in colon cancer tissue compared with normal colon tissue. In accordance with the amplified Ca2+ responses, ATP and UTP substantially increased proliferative activity-evaluated by bromodeoxyuridine incorporation-in breast cancer tissue, whereas the effect was minimal in normal breast tissue. ATP caused cell death-identified with ethidium homodimer-1 staining-in breast cancer tissue only at concentrations above the expected pathophysiological range. We conclude that intracellular Ca2+ responses are amplified in breast cancer tissue, but not in colon cancer tissue, and that nucleotide signaling stimulates breast cancer cell proliferation within the extracellular concentration range typical for solid cancer tissue.


Assuntos
Neoplasias da Mama , Neoplasias do Colo , Acetilcolina , Trifosfato de Adenosina/farmacologia , Animais , Cálcio , Proliferação de Células , Feminino , Humanos , Camundongos , Uridina Trifosfato/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34291319

RESUMO

Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Feminino , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos
10.
Elife ; 102021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34219652

RESUMO

Breast cancer heterogeneity in histology and molecular subtype influences metabolic and proliferative activity and hence the acid load on cancer cells. We hypothesized that acid-base transporters and intracellular pH (pHi) dynamics contribute inter-individual variability in breast cancer aggressiveness and prognosis. We show that Na+,HCO3- cotransport and Na+/H+ exchange dominate cellular net acid extrusion in human breast carcinomas. Na+/H+ exchange elevates pHi preferentially in estrogen receptor-negative breast carcinomas, whereas Na+,HCO3- cotransport raises pHi more in invasive lobular than ductal breast carcinomas and in higher malignancy grade breast cancer. HER2-positive breast carcinomas have elevated protein expression of Na+/H+ exchanger NHE1/SLC9A1 and Na+,HCO3- cotransporter NBCn1/SLC4A7. Increased dependency on Na+,HCO3- cotransport associates with severe breast cancer: enlarged CO2/HCO3--dependent rises in pHi predict accelerated cell proliferation, whereas enhanced CO2/HCO3--dependent net acid extrusion, elevated NBCn1 protein expression, and reduced NHE1 protein expression predict lymph node metastasis. Accordingly, we observe reduced survival for patients suffering from luminal A or basal-like/triple-negative breast cancer with high SLC4A7 and/or low SLC9A1 mRNA expression. We conclude that the molecular mechanisms of acid-base regulation depend on clinicopathological characteristics of breast cancer patients. NBCn1 expression and dependency on Na+,HCO3- cotransport for pHi regulation, measured in biopsies of human primary breast carcinomas, independently predict proliferative activity, lymph node metastasis, and patient survival.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Idoso , Animais , Bicarbonatos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Pessoa de Meia-Idade , Organoides/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio , Transcriptoma
11.
Pathogens ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498288

RESUMO

INTRODUCTION: Healthy women of reproductive age have a vaginal pH around 4.5, whereas little is known about pH in the upper genital tract. A shift in the vaginal microbiota may result in an elevated pH in the upper genital tract. This might contribute to decreased fertility and increased risk of preterm birth. Therefore, we aimed to measure pH in different compartments of the female genital tract in both nonpregnant and pregnant women, stratifying into a normal and abnormal vaginal microbiota. MATERIAL AND METHODS: In this descriptive study, we included 6 nonpregnant, 12 early-pregnant, and 8 term-pregnant women. A pH gradient was recorded with a flexible pH probe. An abnormal vaginal microbiota was diagnosed by a quantitative polymerase chain reaction technique for Atopobium vaginae; Sneathia sanguinegens; Leptotrichia amnionii; bacterial vaginosis-associated bacterium 1, 2, 3, and TM7; and Prevotella spp. among others. RESULTS: In all participants we found the pH gradient in the lower reproductive canal to be most acidic in the lower vagina and most alkaline in the upper uterine cavity. Women with an abnormal vaginal microbiota had an increased pH in the lower vagina compared to the other groups. CONCLUSIONS: There is a pronounced pH gradient within the female genital tract. This gradient is not disrupted in women with an abnormal vaginal microbiota.

12.
Cancers (Basel) ; 12(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268614

RESUMO

The acidic tumor microenvironment modifies malignant cell behavior. Here, we study consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ± 0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3 therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast carcinomas. Changes in protein expression patterns-observed by high-throughput proteomics analyses-between cancer and normal breast tissue and in response to oral NaHCO3 therapy reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation without net effect on breast cancer development or tumor growth. We demonstrate unexpected pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously reported anti-neoplastic effects.

13.
Annu Rev Physiol ; 82: 103-126, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31730395

RESUMO

Acidic metabolic waste products accumulate in the tumor microenvironment because of high metabolic activity and insufficient perfusion. In tumors, the acidity of the interstitial space and the relatively well-maintained intracellular pH influence cancer and stromal cell function, their mutual interplay, and their interactions with the extracellular matrix. Tumor pH is spatially and temporally heterogeneous, and the fitness advantage of cancer cells adapted to extracellular acidity is likely particularly evident when they encounter less acidic tumor regions, for instance, during invasion. Through complex effects on genetic stability, epigenetics, cellular metabolism, proliferation, and survival, the compartmentalized pH microenvironment favors cancer development. Cellular selection exacerbates the malignant phenotype, which is further enhanced by acid-induced cell motility, extracellular matrix degradation, attenuated immune responses, and modified cellular and intercellular signaling. In this review, we discuss how the acidity of the tumor microenvironment influences each stage in cancer development, from dysplasia to full-blown metastatic disease.


Assuntos
Neoplasias/metabolismo , Microambiente Tumoral , Ácidos/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais
14.
Physiol Rep ; 7(8): e14074, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31025551

RESUMO

Lymph vessels counteract edema by transporting interstitial fluid from peripheral tissues to the large veins and serve as conduits for immune cells, cancer cells, and pathogens. Because edema during inflammation and malignancies is frequently associated with acidosis, we tested the hypothesis that acid-base disturbances affect human thoracic duct contractions. We studied, by isometric and isobaric myography, the contractile function of human thoracic duct segments harvested with written informed consent from patients undergoing esophageal cancer surgery. Human thoracic ducts produce complex contractile patterns consisting of tonic rises in tension (isometric myography) or decreases in diameter (isobaric myography) with superimposed phasic contractions. Active tone development decreases substantially (~90% at 30 vs. 7 mmHg) at elevated transmural pressure. Acidosis inhibits spontaneous as well as noradrenaline- and serotonin-induced phasic contractions of human thoracic ducts by 70-90% at extracellular pH 6.8 compared to 7.4 with less pronounced effects observed at pH 7.1. Mean tension responses to noradrenaline and serotonin - averaged over the entire period of agonist exposure - decrease by ~50% at extracellular pH 6.8. Elevating extracellular [K+ ] from the normal resting level around 4 mmol/L increases overall tension development but reduces phasic activity to a level that is no different between human thoracic duct segments investigated at normal and low extracellular pH. In conclusion, we show that extracellular acidosis inhibits human thoracic duct contractions with more pronounced effects on phasic than tonic contractions. We propose that reduced phasic activity of lymph vessels at low pH attenuates lymph propulsion and increases the risk of edema formation.


Assuntos
Acidose/fisiopatologia , Edema/fisiopatologia , Vasos Linfáticos/fisiopatologia , Contração Muscular , Músculo Liso/fisiopatologia , Tórax/fisiopatologia , Agonistas Adrenérgicos/farmacologia , Idoso , Epinefrina/farmacologia , Feminino , Humanos , Vasos Linfáticos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Tono Muscular , Músculo Liso/efeitos dos fármacos , Periodicidade , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Tórax/patologia
15.
Biomed Res Int ; 2019: 3702783, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834261

RESUMO

Increased metabolism accelerates local acid production in cancer tissue. The mechanisms eliminating acidic waste products from human colon cancer tissue represent promising therapeutic targets for pharmacological manipulation in order to improve prognosis for the increasing number of patients with colon cancer. We sampled biopsies of human colonic adenocarcinomas and matched normal colon tissue from patients undergoing colon cancer surgery. We measured steady-state intracellular pH and rates of net acid extrusion in freshly isolated human colonic crypts based on fluorescence microscopy. Net acid extrusion was almost entirely (>95%) Na+-dependent. The capacity for net acid extrusion was increased and steady-state intracellular pH elevated around 0.5 in crypts from colon cancer tissue compared with normal colon tissue irrespective of whether they were investigated in the presence or absence of CO2/HCO3 -. The accelerated net acid extrusion from the human colon cancer tissue was sensitive to the Na+/H+-exchange inhibitor cariporide. We conclude that enhanced net acid extrusion via Na+/H+-exchange elevates intracellular pH in human colon cancer tissue.


Assuntos
Ácidos/metabolismo , Neoplasias do Colo/genética , Trocadores de Sódio-Hidrogênio/genética , Ácidos/química , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Guanidinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Íons/metabolismo , Masculino , Microscopia de Fluorescência , Trocadores de Sódio-Hidrogênio/metabolismo , Sulfonas/farmacologia , Ativação Transcricional/genética
16.
Cancer Metastasis Rev ; 38(1-2): 165-178, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715643

RESUMO

Cell metabolism increases during carcinogenesis. Yet, intracellular pH in solid cancer tissue is typically maintained equal to or above that of normal tissue. This is achieved through accelerated cellular acid extrusion that compensates for the enhanced metabolic acid production. Upregulated Na+,HCO3- cotransport is the predominant mechanism of net acid extrusion in human and murine breast cancer tissue, and in congruence, the protein expression of the electroneutral Na+,HCO3- cotransporter NBCn1 is increased in primary breast carcinomas and lymph node metastases compared to matched normal breast tissue. The capacity for net acid extrusion and level of steady-state intracellular pH are lower in carcinogen- and ErbB2-induced breast cancer tissue from NBCn1 knockout mice compared to wild-type mice. Consistent with importance of intracellular pH control for breast cancer development, tumor-free survival is prolonged and tumor growth rate decelerated in NBCn1 knockout mice compared to wild-type mice. Glycolytic activity increases as function of tumor size and in areas of poor oxygenation. Because cell proliferation in NBCn1 knockout mice is particularly reduced in larger-sized breast carcinomas and central tumor regions with expected hypoxia, current evidence supports that NBCn1 facilitates cancer progression by eliminating intracellular acidic waste products derived from cancer cell metabolism. The present review explores the mechanisms and consequences of acid-base regulation in breast cancer tissue. Emphasis is on the Na+,HCO3- cotransporter NBCn1 that accelerates net acid extrusion from breast cancer tissue and thereby maintains intracellular pH in a range permissive for cell proliferation and development of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Carcinogênese , Humanos , Concentração de Íons de Hidrogênio
17.
Am J Physiol Heart Circ Physiol ; 316(1): H245-H254, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30444664

RESUMO

Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.


Assuntos
Adenocarcinoma/patologia , Artérias/metabolismo , Neoplasias do Colo/patologia , Neovascularização Patológica/metabolismo , Óxido Nítrico/metabolismo , Vasodilatação , Acetilcolina/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Endotelina-1/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Tromboxanos/farmacologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
18.
Oncogene ; 37(41): 5569-5584, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29907770

RESUMO

Metabolic acid production challenges cellular pH homeostasis in solid cancer tissue, and mechanisms of net acid extrusion represent promising new targets for breast cancer therapy. Here, we used genetically engineered mice to investigate the contribution of the Na+,HCO3--cotransporter NBCn1 (Slc4a7) to intracellular acid-base regulation in ErbB2-induced breast cancer tissue and the consequences of NBCn1 knockout for breast tumor development and growth. We demonstrate an approximately 2-fold increase of NBCn1 protein abundance in ErbB2-induced breast cancer tissue compared to normal breast tissue despite a 4-fold decrease in the NBCn1 mRNA level. In congruence, we show that NBCn1 facilitates net acid extrusion and elevates steady-state intracellular pH in breast cancer tissue. Disruption of NBCn1 expression delayed ErbB2-induced breast carcinogenesis from a median tumor-free survival of 9.5 months in wild-type mice to 12 months in NBCn1-knockout mice and decelerated the tumor growth rate by approximately 1/3. Glycolytic metabolism-evaluated based on the interstitial concentrations of lactate and glucose measured in microdialysates-was increased in breast cancer tissue compared to normal breast tissue, but was unaffected by NBCn1 knockout. Disruption of NBCn1 expression inhibited cell proliferation-evaluated by staining for the proliferative marker Ki67-particularly in central tumor areas with predicted increase in acid loading from glycolytic metabolism. In conclusion, NBCn1 regulates intracellular pH in ErbB2-induced breast cancer tissue by providing a pathway for cellular uptake of HCO3-, which can neutralize metabolic acidic waste products. Disrupting NBCn1 expression delays ErbB2-induced breast cancer development, inhibits cancer cell proliferation, and decelerates tumor growth.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Feminino , Genes erbB-2 , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Knockout
19.
Breast Cancer Res ; 20(1): 20, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566737

RESUMO

BACKGROUND: Perfusion of breast cancer tissue limits oxygen availability and metabolism but angiogenesis inhibitors have hitherto been unsuccessful for breast cancer therapy. In order to identify abnormalities and possible therapeutic targets in mature cancer arteries, we here characterize the structure and function of cancer feed arteries and corresponding control arteries from female FVB/N mice with ErbB2-induced breast cancer. METHODS: We investigated the contractile function of breast cancer feed arteries and matched control arteries by isometric myography and evaluated membrane potentials and intracellular [Ca2+] using sharp electrodes and fluorescence microscopy, respectively. Arterial wall structure is assessed by transmission light microscopy of arteries mounted in wire myographs and by evaluation of histological sections using the unbiased stereological disector technique. We determined the expression of messenger RNA by reverse transcription and quantitative polymerase chain reaction and studied receptor expression by confocal microscopy of arteries labelled with the BODIPY-tagged α1-adrenoceptor antagonist prazosin. RESULTS: Breast cancer feed arteries are thin-walled and produce lower tension than control arteries of similar diameter in response to norepinephrine, thromboxane-analog U46619, endothelin-1, and depolarization with elevated [K+]. Fewer layers of similarly-sized vascular smooth muscle cells explain the reduced media thickness of breast cancer arteries. Evidenced by lower media stress, norepinephrine-induced and thromboxane-induced tension development of breast cancer arteries is reduced more than is explained by the thinner media. Conversely, media stress during stimulation with endothelin-1 and elevated [K+] is similar between breast cancer and control arteries. Correspondingly, vascular smooth muscle cell depolarizations and intracellular Ca2+ responses are attenuated in breast cancer feed arteries during norepinephrine but not during endothelin-1 stimulation. Protein expression of α1-adrenoceptors and messenger RNA levels for α1A-adrenoceptors are lower in breast cancer arteries than control arteries. Sympathetic vasocontraction elicited by electrical field stimulation is inhibited by α1-adrenoceptor blockade and reduced in breast cancer feed arteries compared to control arteries. CONCLUSION: Thinner media and lower α1-adrenoceptor expression weaken contractions of breast cancer feed arteries in response to sympathetic activity. We propose that abnormalities in breast cancer arteries can be exploited to modify tumor perfusion and thereby either starve cancer cells or facilitate drug and oxygen delivery during chemotherapy or radiotherapy.


Assuntos
Neoplasias da Mama/genética , Neoplasias Mamárias Animais/genética , Neovascularização Patológica/genética , Receptores Adrenérgicos alfa 1/genética , Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Animais , Artérias/crescimento & desenvolvimento , Artérias/patologia , Artérias/ultraestrutura , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Cálcio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/patologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Contração Muscular/efeitos dos fármacos , Miografia , Neovascularização Patológica/patologia , Norepinefrina/administração & dosagem , Oxigênio/metabolismo , Prazosina/administração & dosagem , RNA Mensageiro/genética , Receptor ErbB-2/genética , Receptores Adrenérgicos alfa 1/administração & dosagem
20.
Int J Cancer ; 142(12): 2529-2542, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29363134

RESUMO

High metabolic and proliferative rates in cancer cells lead to production of large amounts of H+ and CO2 , and as a result, net acid extruding transporters are essential for the function and survival of cancer cells. We assessed protein expression of the Na+ /H+ exchanger NHE1, the Na+ - HCO3- cotransporter NBCn1, and the lactate-H+ cotransporters MCT1 and -4 by immunohistochemical analysis of a large cohort of breast cancer samples. We found robust expression of these transporters in 20, 10, 4 and 11% of samples, respectively. NHE1 and NBCn1 expression both correlated positively with progesterone receptor status, NHE1 correlated negatively and NBCn1 positively with HER2 status, whereas MCT4 expression correlated with lymph node status. Stable shRNA-mediated knockdown (KD) of either NHE1 or NBCn1 in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line significantly reduced steady-state intracellular pH (pHi ) and capacity for pHi recovery after an acid load. Importantly, KD of any of the three transporters reduced in vivo primary tumor growth of MDA-MB-231 xenografts. However, whereas KD of NBCn1 or MCT4 increased tumor-free survival and decreased in vitro proliferation rate and colony growth in soft agar, KD of NHE1 did not have these effects. Moreover, only MCT4 KD reduced Akt kinase activity, PARP and CD147 expression and cell motility. This work reveals that different types of net acid extruding transporters, NHE1, NBCn1 and MCT4, are frequently expressed in patient mammary tumor tissue and demonstrates for the first time that they promote growth of TNBC human mammary tumors in vivo via distinct but overlapping mechanisms.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA