Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636660

RESUMO

Unsaturated fatty acid ketones with αß,γδ conjugation are susceptible to Michael addition of thiols, with unresolved issues on the site of adduction and precise structures of the conjugates. Herein we reacted 13-keto-octadecadienoic acid (13-oxo-ODE or 13-KODE) with glutathione (GSH), N-acetyl-cysteine, and ß-mercaptoethanol and identified the adducts. HPLC-UV analyses indicated none of the products exhibit a conjugated enone UV chromophore, a result that conflicts with the literature and is relevant to the mass spectral interpretation of 1,4 versus 1,6 thiol adduction. Aided by the development of an HPLC solvent system that separates the GSH diastereomers and thus avoids overlap of signals in proton NMR experiments, we established the two major conjugates are formed by 1,6 addition of GSH at the 9-carbon of 13-oxo-ODE with the remaining double bond α to the thiol in the 10,11 position. N-acetyl cysteine reacts similarly, while ß-mercaptoethanol gives equal amounts of 1,4 and 1,6 addition products. Equine glutathione transferase catalyzed 1,6 addition of GSH to the two major diastereomers in 44:56 proportions. LC-MS in positive ion mode gives a product ion interpreted before as evidence of 1,4-thiol adduction, whereas here we find this ion using the authentic 1,6 adduct. LC-MS with negative ion APCI gave a fragment selective for 1,4 adduction. These results clarify the structures of thiol conjugates of a prototypical unsaturated keto-fatty acid and have relevance to the application of LC-MS for the structural analysis of keto-fatty acid glutathione conjugation.


Assuntos
Glutationa , Compostos de Sulfidrila , Glutationa/química , Glutationa/metabolismo , Compostos de Sulfidrila/química , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Mercaptoetanol/química , Espectrometria de Massa com Cromatografia Líquida
2.
Microbiol Spectr ; 12(5): e0047024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501821

RESUMO

Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.


Assuntos
Proteínas de Bactérias , Ácidos Graxos , Helicobacter pylori , Lipoproteínas , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Lipoproteínas/metabolismo , Lipoproteínas/química , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Humanos , Infecções por Helicobacter/microbiologia , Imunidade Inata , Cromatografia Gasosa-Espectrometria de Massas
3.
Chem Res Toxicol ; 31(4): 269-276, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29569909

RESUMO

The polypharmacological effects of the turmeric compound curcumin may be partly mediated by covalent adduction to cellular protein. Covalent binding to small molecule and protein thiols is thought to occur through a Michael-type addition at the enone moiety of the heptadienedione chain connecting the two methoxyphenol rings of curcumin. Here we show that curcumin forms the predicted thiol-Michael adducts with three model thiols, glutathione, N-acetylcysteine, and ß-mercaptoethanol. More abundant, however, are respective thiol adducts of the dioxygenated spiroepoxide intermediate of curcumin autoxidation. Two electrophilic sites at the quinone-like ring of the spiroepoxide are identified. Addition of ß-mercaptoethanol at the 5'-position of the ring gives a 1,7-dihydroxycyclopentadione-5' thioether, and addition at the 1'-position results in cleavage of the aromatic ring from the molecule, forming methoxyphenol-thioether and a tentatively identified cyclopentadione aldehyde. The curcuminoids demethoxy- and bisdemethoxycurcumin do not form all of the possible thioether adducts, corresponding with their increased stability toward autoxidation. RAW264.7 macrophage-like cells activated with phorbol ester form curcumin-glutathionyl and the 1,7-dihydroxycyclopentadione-5'-glutathionyl adducts. These studies indicate that the enone of the parent compound is not the only functional electrophile in curcumin, and that its oxidation products provide additional electrophilic sites. This suggests that protein binding by curcumin may involve oxidative activation into reactive quinone methide and spiroepoxide electrophiles.


Assuntos
Curcumina/química , Compostos de Sulfidrila/química , Animais , Curcumina/síntese química , Curcumina/metabolismo , Macrófagos/química , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Oxirredução , Células RAW 264.7 , Compostos de Sulfidrila/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-27596332

RESUMO

The hemiketal (HK) eicosanoids HKE2 and HKD2 are the major products resulting from the biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. They are formed by activated human leukocytes ex vivo, and, therefore, may be involved in regulation of the inflammatory response as autocrine or paracrine mediators. HKE2 and HKD2 are not commercially available and, so far, no method for their total chemical synthesis has been reported. The limited availability has impeded the characterization of their biological effects. Here, we describe a method for biomimetic preparation of HKE2 and HKD2 by reaction of recombinant human cyclooxygenase-2 with chemically synthesized 5S-HETE. We found that HKE2 did not induce or inhibit the release of TNFα and IL-1ß by human THP-1 monocytes and phorbol ester treatment-derived macrophages.


Assuntos
Biomimética , Eicosanoides/síntese química , Eicosanoides/farmacologia , Aldeídos/química , Técnicas de Química Sintética , Citocinas/metabolismo , Eicosanoides/química , Humanos , Cetonas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
5.
Biochim Biophys Acta ; 1851(10): 1346-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209563

RESUMO

There are many reports of the anti-inflammatory, anti-cancer, and anti-atherosclerotic activities of conjugated linolenic acids (cLNA). They constitute a small percentage of fatty acids in the typical human diet, although up to 80% of the fatty acids in certain fruits such as pomegranate. In the course of studying a bacterial fatty acid dioxygenase (Nostoc linoleate 10S-DOX, an ancient relative of mammalian cyclooxygenases), we detected strong inhibitory activity in a commercial sample of linoleic acid. We identified two cLNA isomers, ß-eleostearic (9E,11E,13E-18:3) and ß-calendic acid (8E,10E,12E-18:3), as responsible for that striking inhibition with a Ki of ~49nM and ~125nM, respectively, the most potent among eight cLNA tested. We also examined the effects of all eight cLNA on the activity of COX-1 and COX-2. Jacaric acid (8Z,10E,12Z-18:3) and its 12E isomer, 8Z,10E,12E-18:3, strongly inhibit the activity of COX-1 with a Ki of ~1.7 and ~1.1µM, respectively. By contrast, COX-2 was ≤30% inhibited at 10µM concentrations of the cLNA. Identifying the activities of the naturally occurring fatty acids is of interest in terms of understanding their interaction with the enzymes, and for explaining the mechanistic basis of their biological effects. The study also highlights the potential presence of inhibitory fatty acids in commercial lipids prepared from natural sources. Analysis of seven commercial samples of linoleic acid by HPLC and UV spectroscopy is illustrated as supplementary data.


Assuntos
Proteínas de Bactérias/química , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores Enzimáticos/química , Ácidos Linolênicos/química , Nostoc/enzimologia , Humanos , Estereoisomerismo
6.
J Biol Chem ; 287(29): 24139-47, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22628547

RESUMO

The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 µm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.


Assuntos
Catalase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hemeproteínas/metabolismo , Oxirredutases Intramoleculares/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Iodobenzenos/metabolismo , Ácidos Linoleicos/metabolismo , Espectroscopia de Ressonância Magnética
7.
Proc Natl Acad Sci U S A ; 108(17): 6945-50, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482803

RESUMO

The prostaglandin and leukotriene families of lipid mediators are formed via two distinct biosynthetic pathways that are initiated by the oxygenation of arachidonic acid by either cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LOX), respectively. The 5-LOX product 5S-hydroxyeicosatetraenoic acid, however, can also serve as an efficient substrate for COX-2, forming a bicyclic diendoperoxide with structural similarities to the arachidonic acid-derived prostaglandin endoperoxide PGH(2) [Schneider C, et al. (2006) J Am Chem Soc 128:720-721]. Here we identify two cyclic hemiketal (HK) eicosanoids, HKD(2) and HKE(2), as the major nonenzymatic rearrangement products of the diendoperoxide using liquid chromatography-mass spectrometry analyses as well as UV and NMR spectroscopy. HKD(2) and HKE(2) are furoketals formed by spontaneous cyclization of their respective 8,9-dioxo-5S,11R,12S,15S-tetrahydroxy- or 11,12-dioxo-5S,8S,9S,15S-tetrahydroxy-eicosadi-6E,13E-enoic acid precursors, resulting from opening of the 9S,11R- and 8S,12S-peroxide rings of the diendoperoxide. Furthermore, the diendoperoxide is an efficient substrate for the hematopoietic type of prostaglandin D synthase resulting in formation of HKD(2), equivalent to the enzymatic transformation of PGH(2) to PGD(2). HKD(2) and HKE(2) were formed in human blood leukocytes activated with bacterial lipopolysaccharide and calcium ionophore A23187, and biosynthesis was blocked by inhibitors of 5-LOX or COX-2. HKD(2) and HKE(2) stimulated migration and tubulogenesis of microvascular endothelial cells, implicating a proangiogenic role of the hemiketals in inflammatory sites that involve expression of 5-LOX and COX-2. Identification of the highly oxygenated hemiketal eicosanoids provides evidence for a previously unrecognized biosynthetic cross-over of the 5-LOX and COX-2 pathways.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Eicosanoides/biossíntese , Leucócitos/enzimologia , Araquidonato 5-Lipoxigenase/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/genética , Eicosanoides/genética , Humanos , Leucócitos/citologia , Lipopolissacarídeos/farmacologia
8.
J Lipid Res ; 51(3): 575-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19752399

RESUMO

Biosynthesis of the prostaglandin endoperoxide by the cyclooxygenase (COX) enzymes is accompanied by formation of a small amount of 11R-hydroxyeicosatetraenoic acid (HETE), 15R-HETE, and 15S-HETE as by-products. Acetylation of COX-2 by aspirin abrogates prostaglandin synthesis and triggers formation of 15R-HETE as the sole product of oxygenation of arachidonic acid. Here, we investigated the formation of by-products of the transformation of 5S-HETE by native COX-2 and by aspirin-acetylated COX-2 using HPLC-ultraviolet, GC-MS, and LC-MS analysis. 5S,15S- dihydroxy (di)HETE, 5S,15R-diHETE, and 5S,11R-diHETE were identified as by-products of native COX-2, in addition to the previously described di-endoperoxide (5S,15S-dihydroxy-9S,11R,8S,12S-diperoxy-6E,13E-eicosadienoic acid) as the major oxygenation product. 5S,15R-diHETE was the only product formed by aspirin-acetylated COX-2. Both 5,15-diHETE and 5,11-diHETE were detected in CT26 mouse colon carcinoma cells as well as in lipopolysaccharide-activated RAW264.7 cells incubated with 5S-HETE, and their formation was attenuated in the presence of the COX-2 specific inhibitor, NS-398. Aspirin-treated CT26 cells gave 5,15-diHETE as the most prominent product formed from 5S-HETE. 5S,15S-diHETE has been described as a product of the cross-over of 5-lipoxygenase (5-LOX) and 15-LOX activities in elicited rat mononuclear cells and human leukocytes, and our studies implicate cross-over of the 5-LOX and COX-2 pathways as an additional biosynthetic route.


Assuntos
Aspirina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Oxigênio/metabolismo , Acetilação/efeitos dos fármacos , Animais , Aspirina/química , Linhagem Celular , Dicroísmo Circular , Ciclo-Oxigenase 2/química , Humanos , Ácidos Hidroxieicosatetraenoicos/análise , Ácidos Hidroxieicosatetraenoicos/biossíntese , Camundongos , Estereoisomerismo
9.
J Lipid Res ; 50(7): 1448-55, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19244216

RESUMO

Biosynthesis of the leukotriene A (LTA) class of epoxide is a lipoxygenase-catalyzed transformation requiring a fatty acid hydroperoxide substrate containing at least three double bonds. Here, we report on biosynthesis of a dienoic analog of LTA epoxides via a different enzymatic mechanism. Beginning with homolytic cleavage of the hydroperoxide moiety, a catalase/peroxidase-related hemoprotein from Anabaena PCC 7120, which occurs in a fusion protein with a linoleic acid 9R-lipoxygenase, dehydrates 9R-hydroperoxylinoleate to a highly unstable epoxide. Using methods we developed for isolating extremely labile compounds, we prepared and purified the epoxide and characterized its structure as 9R,10R-epoxy-octadeca-11E,13E-dienoate. This epoxide hydrolyzes to stable 9,14-diols that were reported before in linoleate autoxidation (Hamberg, M. 1983. Autoxidation of linoleic acid: Isolation and structure of four dihydroxy octadecadienoic acids. Biochim. Biophys. Acta 752: 353-356) and in incubations with the Anabaena enzyme (Lang, I., C. Göbel, A. Porzel, I. Heilmann, and I. Feussner. 2008. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410: 347-357). We also prepared an equivalent epoxide from 13S-hydroperoxylinoleate using a "biomimetic" chemical method originally described for LTA(4) synthesis and showed that like LTA(4), the C18.2 epoxide conjugates readily with glutathione, a potential metabolic fate in vivo. We compare and contrast the mechanisms of LTA-type allylic epoxide synthesis by lipoxygenase, catalase/peroxidase, and chemical transformations. These findings provide new insights into the reactions of linoleic acid hydroperoxides and extend the known range of catalytic activities of catalase-related hemoproteins.


Assuntos
Anabaena/enzimologia , Compostos de Epóxi , Leucotrieno A4/biossíntese , Ácido Linoleico , Anabaena/química , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/genética , Catalase/metabolismo , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Glutationa/metabolismo , Ácido Linoleico/biossíntese , Ácido Linoleico/síntese química , Ácido Linoleico/química , Lipoxigenase/genética , Lipoxigenase/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Biol Reprod ; 75(3): 395-406, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16760379

RESUMO

We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.


Assuntos
Implantação do Embrião/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Endométrio/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Imuno-Histoquímica , Técnicas In Vitro , Cinética , Dados de Sequência Molecular , Coelhos , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/biossíntese , Enzimas de Conjugação de Ubiquitina/genética
11.
Cancer Res ; 63(9): 2256-67, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727848

RESUMO

Changes in expression of arachidonic acid (AA) metabolizing enzymes are implicated in the development and progression of human prostate carcinoma (Pca). Transgenic mouse models of Pca that progress from high-grade prostatic intraepithelial neoplasia (HGPIN) to invasive and metastatic carcinoma could facilitate study of the regulation and function of these genes in Pca progression. Herein we characterize the AA-metabolizing enzymes in transgenic mice established with a prostate epithelial-specific long probasin promoter and the SV40 large T antigen (LPB-Tag mice) that develop extensive HGPIN and invasive and metastatic carcinoma with neuroendocrine (NE) differentiation. Murine 8-lipoxygenase (8-LOX), homologue of the 15-LOX-2 enzyme that is expressed in benign human prostatic epithelium and reduced in Pca, was not detected in wild-type or LPB-Tag prostates as determined by enzyme assay, reverse transcription-PCR, and immunohistochemistry. The most prominent AA metabolite in mouse prostate was 12-HETE. Wild-type prostate (dorsolateral lobe) converted 1.6 +/- 0.5% [(14)C]AA to 12-HETE (n = 7), and this increased to 8.0 +/- 4.4% conversion in LPB-Tag mice with HGPIN (n = 13). Quantitative real-time reverse transcription-PCR and immunostaining correlated the increased 12-HETE synthesis with increased neoplastic epithelial expression of 12/15-LOX, the leukocyte-type (L) of 12-LOX and the murine homologue of human 15-LOX-1. Immunostaining showed increased L12-LOX in invasive carcinoma and approximately one-half of metastatic foci. COX-2 mRNA was detectable in neoplastic prostates with HGPIN but not in wild-type prostate. By immunostaining, COX-2 was increased in the neoplastic epithelium of HGPIN but was absent in foci of invasion and metastases. We conclude that (a) AA metabolism in wild-type mouse prostate differs from humans in the basal expression of LOXs (15-LOX-2 in human, absence of its 8-LOX homologue in mouse prostate); (b) increased expression of 12/15-LOX in HGPIN and invasive carcinoma of the LPB-Tag model is similar to the increased 15-LOX-1 in high-grade human Pca; and (c) the LPB-Tag model shows increased COX-2 in HGPIN, and therefore, it may allow additional definition of the role of this enzyme in the subset of human HGPINs or other precursor lesions that are COX-2 positive, as well as investigation of its contribution to neoplastic cell proliferation and tumor angiogenesis in Pca.


Assuntos
Araquidonato 12-Lipoxigenase/biossíntese , Araquidonato 15-Lipoxigenase/biossíntese , Ácido Araquidônico/metabolismo , Isoenzimas/biossíntese , Prostaglandina-Endoperóxido Sintases/biossíntese , Neoplasias da Próstata/enzimologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Proteína de Ligação a Androgênios/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Araquidonato Lipoxigenases/biossíntese , Araquidonato Lipoxigenases/genética , Ciclo-Oxigenase 2 , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA