Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572564

RESUMO

Hematopoiesis is driven by molecular mechanisms that induce differentiation and proliferation of hematopoietic stem cells and their progeny. This involves the activity of various transcription factors, such as members of the Hairy/Enhancer of Split (HES) family, and important roles for both HES1 and HES4 have been shown in normal and malignant hematopoiesis. Here, we investigated the role of HES6 in human hematopoiesis using in vitro and in vivo models. Using bulk and scRNA-seq data, we show that HES6 is expressed during erythroid/megakaryocyte and pDC development, as well as in multipotent precursors and at specific stages of T- and B-cell development following preBCR and preTCR signalling, respectively. Consistently, knockdown of HES6 in cord blood-derived hematopoietic precursors in well-defined in vitro differentiation assays resulted in reduced differentiation of human hematopoietic precursors towards megakaryocytes, erythrocytes, pDCs, Band T-cells. In addition, HES6 knockdown HSPCs displayed reduced colony forming unit capacity in vitro and impaired potential to reconstitute hematopoiesis in vivo in a competitive transplantation assay. We demonstrate that loss of HES6 expression impacts cell cycle progression during erythroid differentiation and provide evidence for potential downstream target genes that impact these perturbations. Thus, our study uncovers new insights for a role of HES6 in human hematopoiesis.

2.
Clin Cancer Res ; 30(11): 2514-2530, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38252421

RESUMO

PURPOSE: Develop a novel therapeutic strategy for patients with subtypes of mature T-cell and NK-cell neoplasms. EXPERIMENTAL DESIGN: Primary specimens, cell lines, patient-derived xenograft models, commercially available, and proprietary anti-KLRG1 antibodies were used for screening, target, and functional validation. RESULTS: Here we demonstrate that surface KLRG1 is highly expressed on tumor cells in subsets of patients with extranodal NK/T-cell lymphoma (ENKTCL), T-prolymphocytic leukemia (T-PLL), and gamma/delta T-cell lymphoma (G/D TCL). The majority of the CD8+/CD57+ or CD3-/CD56+ leukemic cells derived from patients with T- and NK-large granular lymphocytic leukemia (T-LGLL and NK-LGLL), respectively, expressed surface KLRG1. The humanized afucosylated anti-KLRG1 monoclonal antibody (mAb208) optimized for mouse in vivo use depleted KLRG1+ TCL cells by mechanisms of ADCC, ADCP, and CDC rather than apoptosis. mAb208 induced ADCC and ADCP of T-LGLL patient-derived CD8+/CD57+ cells ex vivo. mAb208 effected ADCC of subsets of healthy donor-derived KLRG1+ NK, CD4+, CD8+ Tem, and TemRA cells while sparing KLRG1- naïve and CD8+ Tcm cells. Treatment of cell line and TCL patient-derived xenografts with mAb208 or anti-CD47 mAb alone and in combination with the PI3K-δ/γ inhibitor duvelisib extended survival. The depletion of macrophages in vivo antagonized mAb208 efficacy. CONCLUSIONS: Our findings suggest the potential benefit of a broader treatment strategy combining therapeutic antibodies with PI3Ki for the treatment of patients with mature T-cell and NK-cell neoplasms. See related commentary by Varma and Diefenbach, p. 2300.


Assuntos
Lectinas Tipo C , Receptores Imunológicos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/antagonistas & inibidores , Linhagem Celular Tumoral , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Linfoma de Células T/terapia , Linfoma de Células T/tratamento farmacológico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia
3.
Nat Immunol ; 24(3): 474-486, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703005

RESUMO

The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.


Assuntos
Células Dendríticas , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Diferenciação Celular , Linhagem da Célula , Fatores Reguladores de Interferon/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Timo/metabolismo , Fatores de Necrose Tumoral/metabolismo
4.
Semin Immunol ; 61-64: 101662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36374779

RESUMO

γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αß T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Linhagem da Célula , Diferenciação Celular , Timo , Linfócitos T
5.
Front Immunol ; 13: 960918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967340

RESUMO

T cells are generated from hematopoietic stem cells through a highly organized developmental process, in which stage-specific molecular events drive maturation towards αß and γδ T cells. Although many of the mechanisms that control αß- and γδ-lineage differentiation are shared between human and mouse, important differences have also been observed. Here, we studied the regulatory dynamics of the E and ID protein encoding genes during pediatric human T cell development by evaluating changes in chromatin accessibility, histone modifications and bulk and single cell gene expression. We profiled patterns of ID/E protein activity and identified up- and downstream regulators and targets, respectively. In addition, we compared transcription of E and ID protein encoding genes in human versus mouse to predict both shared and unique activities in these species, and in prenatal versus pediatric human T cell differentiation to identify regulatory changes during development. This analysis showed a putative involvement of TCF3/E2A in the development of γδ T cells. In contrast, in αß T cell precursors a pivotal pre-TCR-driven population with high ID gene expression and low predicted E protein activity was identified. Finally, in prenatal but not postnatal thymocytes, high HEB/TCF12 levels were found to counteract high ID levels to sustain thymic development. In summary, we uncovered novel insights in the regulation of E and ID proteins on a cross-species and cross-developmental level.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Diferenciação Celular/genética , Criança , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fatores de Transcrição/metabolismo
6.
J Immunol ; 208(4): 807-818, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35039330

RESUMO

Granulomatosis with polyangiitis (GPA) is a potentially fatal small vessel vasculitis of unknown etiology, characterized by anti-neutrophil cytoplasmic autoantibodies, chronic inflammation, and granulomatous tissue damage. T cell dysregulation, comprising decreased regulatory T cell function and increased circulating effector memory follicular Th cells (TFH), is strongly associated with disease pathogenesis, but the mechanisms driving these observations are unknown. We undertook transcriptomic and functional analysis of naive CD4 T cells from patients with GPA to identify underlying functional defects that could manifest in the pathogenic profiles observed in GPA. Gene expression studies revealed a dysregulation of the IL-2 receptor ß/JAK-STAT signaling pathway and higher expression of BCL6 and BCL6-regulated genes in GPA naive CD4 T cells. IL-2-induced STAT5 activation in GPA naive CD4 T cells was decreased, whereas STAT3 activation by IL-6 and IL-2 was unperturbed. Consistently, BCL6 expression was sustained following T cell activation of GPA naive CD4 T cells and in vitro TFH differentiation of these cells resulted in significant increases in the production TFH-related cytokines IL-21 and IL-6. Thus, naive CD4 T cells are dysregulated in patients with GPA, resulting from an imbalance in signaling equilibrium and transcriptional changes that drives the skewed pathogenic CD4 effector immune response in GPA.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Granulomatose com Poliangiite/etiologia , Granulomatose com Poliangiite/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Fator de Transcrição STAT5/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Adulto , Idoso , Diferenciação Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Granulomatose com Poliangiite/diagnóstico , Humanos , Janus Quinases/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Transcriptoma , Adulto Jovem
7.
Br J Cancer ; 125(5): 699-713, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34172930

RESUMO

BACKGROUND: Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers' ability to metastasise. First anti-metastatic treatments have recently been approved. METHODS: We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. RESULTS: Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. CONCLUSIONS: We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.


Assuntos
Biologia Computacional/métodos , Melanoma/tratamento farmacológico , Miosina Tipo II/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Masculino , Espectrometria de Massas , Melanoma/metabolismo , Camundongos , Metástase Neoplásica , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Cell ; 37(1): 85-103.e9, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935375

RESUMO

Despite substantial clinical benefit of targeted and immune checkpoint blockade-based therapies in melanoma, resistance inevitably develops. We show cytoskeletal remodeling and changes in expression and activity of ROCK-myosin II pathway during acquisition of resistance to MAPK inhibitors. MAPK regulates myosin II activity, but after initial therapy response, drug-resistant clones restore myosin II activity to increase survival. High ROCK-myosin II activity correlates with aggressiveness, identifying targeted therapy- and immunotherapy-resistant melanomas. Survival of resistant cells is myosin II dependent, regardless of the therapy. ROCK-myosin II ablation specifically kills resistant cells via intrinsic lethal reactive oxygen species and unresolved DNA damage and limits extrinsic myeloid and lymphoid immunosuppression. Efficacy of targeted therapies and immunotherapies can be improved by combination with ROCK inhibitors.


Assuntos
Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos , Melanoma/metabolismo , Miosina Tipo II/metabolismo , Animais , Antígeno B7-H1/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Humanos , Imunoterapia , Sistema de Sinalização das MAP Quinases , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA