Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 14(1): 2999, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316851

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.


Assuntos
Disruptores Endócrinos , Estrogênios , Humanos , Células MCF-7 , Ecossistema , Estradiol , Estrona , Aprendizado de Máquina
2.
Res Sq ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37886543

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.

3.
Toxicol In Vitro ; 91: 105624, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37230229

RESUMO

The risk assessment of endocrine-disrupting chemicals (EDCs) greatly relies on in vitro screening. A 3-dimensional (3D) in vitro prostate model that can reflect physiologically-relevant prostate epithelial and stromal crosstalk can significantly advance the current androgen assessment. This study built a prostate epithelial and stromal co-culture microtissue model with BHPrE and BHPrS cells in scaffold-free hydrogels. The optimal 3D co-culture condition was defined, and responses of the microtissue to androgen (dihydrotestosterone, DHT) and anti-androgen (flutamide) exposure were characterized using molecular and image profiling techniques. The co-culture prostate microtissue maintained a stable structure for up to seven days and presented molecular and morphological features of the early developmental stage of the human prostate. The cytokeratin 5/6 (CK5/6) and cytokeratin 18 (CK18) immunohistochemical staining indicated epithelial heterogeneity and differentiation in these microtissues. The prostate-related gene expression profiling did not efficiently differentiate androgen and anti-androgen exposure. However, a cluster of distinctive 3D image features was identified and could be applied in the androgenic and anti-androgenic effect prediction. Overall, the current study established a co-culture prostate model that provided an alternative strategy for (anti-)androgenic EDC safety assessment and highlighted the potential and advantage of utilizing image features to predict endpoints in chemical screening.


Assuntos
Androgênios , Próstata , Masculino , Humanos , Androgênios/toxicidade , Próstata/metabolismo , Técnicas de Cocultura , Di-Hidrotestosterona/farmacologia , Antagonistas de Androgênios/toxicidade , Células Estromais , Receptores Androgênicos/metabolismo , Células Epiteliais/metabolismo
4.
Biol Reprod ; 101(5): 875-877, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31426087

RESUMO

Histone three lysine four dimethylation (H3k4me2) in sperm is conserved across species and is linked to transgenerational epigenetic inheritance. To test whether H3K4me2 is a target for transgenerational inheritance of toxicity, a daily gavage bolus exposure of trichloroethylene (TCE) (1000 mg/kg/day) was given to rats for 14 weeks, then epididymal sperm were isolated and native chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) of H3K4me2 was performed. Differential region analysis determined there were 2608 significantly differential H3K4me2 regions after TCE exposure, 477 were significantly increased and 2131 were significantly decreased. Z-score enrichment of differential regions determined there were significantly decreased H3k4me2 in the coding and regulatory regions of genes in the PKA signaling pathway. These changes account for TCE induced spermatozoal toxicity and show H3K4me2 is a target for paternal inheritance of toxicity.


Assuntos
Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histonas/metabolismo , Transdução de Sinais , Espermatozoides/fisiologia , Tricloroetileno/toxicidade , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos F344
5.
Toxicol In Vitro ; 60: 203-211, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31154061

RESUMO

The development and normal function of prostate tissue depends on signalling interactions between stromal and epithelial compartments. Development of a prostate microtissue composed of these two components can help identify substance exposures that could cause adverse effects in humans as part of a non-animal risk assessment. In this study, prostate microtissues composed of human derived stromal (WPMY-1) and epithelial (RWPE-1) cell lines grown in scaffold-free hydrogels were developed and characterized using immunohistochemistry, light microscopy, and qRT-PCR. Within 5 days after seeding, the microtissues self-organized into spheroids consisting of a core of stromal WPMY-1 cells surrounded by epithelial RWPE-1 cells. The RWPE-1 layer is reflective of intermediate prostatic epithelium, expressing both characteristics of the luminal (high expression of PSA) and basal (high expression of cytokeratins 5/6 and 14) epithelial cells. The response of the microtissues to an androgen (dihydrotestosterone, DHT) and an anti-androgen (flutamide) was also investigated. Treatment with DHT, flutamide or a mixture of DHT and flutamide indicated that the morphology and self-organization of the microtissues is androgen dependent. qRT-PCR data showed that a saturating concentration of DHT increased the expression of genes coding for the estrogen receptors (ESR1 and ESR2) and decreased the expression of CYP1B1 without affecting the expression of the androgen receptor. With further development and optimization RWPE-1/WPMY-1 microtissues can play an important role in non-animal risk assessments.


Assuntos
Alternativas aos Testes com Animais , Próstata , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Linhagem Celular , Técnicas de Cocultura , Citocromo P-450 CYP1B1/genética , Di-Hidrotestosterona/farmacologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Flutamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis , Masculino , Receptores Androgênicos/genética
6.
Toxicol Sci ; 169(2): 399-408, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768127

RESUMO

Testicular histology and semen parameters are considered the gold standards when determining male reproductive toxicity. Ethylene glycol monomethyl ether (EGME) is a testicular toxicant with well-described effects on histopathology and sperm parameters. To compare the predictivity and sensitivity of molecular biomarkers of testicular toxicity to the traditional endpoints, small RNAs in the sperm were analyzed by next generation RNA-sequencing (RNA-seq). Adult rats were exposed to 0, 50, 60, or 75 mg/kg EGME by oral gavage for 5 consecutive days. Testis histology, epididymal sperm motility, and sperm small RNAs, including microRNAs (miRNAs), mRNA fragments, piwi-interacting RNAs (piRNAs), and tRNA fragments (tRFs), were analyzed 5 weeks after cessation of exposure. Testicular histology showed a significant dose-dependent increase in retained spermatid heads (RSH), while sperm motility declined with increasing dose. RNA-sequencing of sperm small RNAs was used to identify significant dose-dependent changes in percent mRNA fragments (of total reads), percent miRNAs (of total reads), average tRF length, average piRNA length, and piRNA and tRF length-distributions. Discriminant analysis showed relatively low predictivity of exposure based on RSH or motility compared to the average read length of all assigned RNAs. Benchmark dose (BMD) modeling resulted in a BMD of 62 mg/kg using RSH, whereas average read length of all assigned RNAs resulted in a BMD of 47 mg/kg. These results showed that sperm small RNAs are sensitive and predictive biomarkers of EGME-induced male reproductive toxicity.


Assuntos
Etilenoglicóis/toxicidade , MicroRNAs/análise , RNA Interferente Pequeno/análise , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Biomarcadores/sangue , Masculino , Nível de Efeito Adverso não Observado , RNA Mensageiro/análise , RNA de Transferência/análise , Ratos , Ratos Endogâmicos F344 , Análise de Sequência de RNA , Espermatozoides/química , Testículo/patologia
7.
Andrology ; 5(6): 1141-1152, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28834365

RESUMO

The tumor suppressor protein p53 (TP53) has many functions in cell cycle regulation, apoptosis, and DNA damage repair and is also involved in spermatogenesis in the mouse. To evaluate the role of p53 in spermatogenesis in the rat, we characterized testis biology in adult males of a novel p53 knockout rat (SD-Tp53tm1sage ). p53 knockout rats exhibited variable levels of testicular atrophy, including significantly decreased testis weights, atrophic seminiferous tubules, decreased seminiferous tubule diameter, and elevated spermatocyte TUNEL labeling rates, indicating a dysfunction in spermatogenesis. Phosphorylated histone H2AX protein levels and distribution were similar in the non-atrophic seminiferous tubules of both genotypes, showing evidence of pre-synaptic DNA double-strand breaks in leptotene and zygotene spermatocytes, preceding cell death in p53 knockout rat testes. Quantification of the spermatogonial stem cell (SSC) proliferation rate with bromodeoxyuridine (BrdU) labeling, in addition to staining with the undifferentiated type A spermatogonial marker GDNF family receptor alpha-1 (GFRA1), indicated that the undifferentiated spermatogonial population was normal in p53 knockout rats. Following exposure to 0.5 or 5 Gy X-ray, p53 knockout rats exhibited no germ cell apoptotic response beyond their unirradiated phenotype, while germ cell death in wild-type rat testes was elevated to a level similar to the unexposed p53 knockout rats. This study indicates that seminiferous tubule atrophy occurs following spontaneous, elevated levels of spermatocyte death in the p53 knockout rat. This phenomenon is variable across individual rats. These results indicate a critical role for p53 in rat germ cell survival and spermatogenesis.


Assuntos
Espermatogênese/genética , Espermatogônias/patologia , Testículo/patologia , Proteína Supressora de Tumor p53/genética , Animais , Atrofia , Proliferação de Células/genética , Técnicas de Inativação de Genes , Masculino , Ratos , Ratos Sprague-Dawley , Espermatogônias/metabolismo
8.
PLoS One ; 12(5): e0177995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542403

RESUMO

Cryptorchidism or undescended testis (UDT) is a common congenital abnormality associated with increased risk for developing male infertility and testicular cancer. This study elucidated the effects of endogenous ghrelin or growth hormone secretagogue receptor (GHSR) deletion on mouse reproductive performance and evaluated the ability of ghrelin to prevent testicular damage in a surgical cryptorchid mouse model. Reciprocal matings with heterozygous/homozygous ghrelin and GHSR knockout mice were performed. Litter size and germ cell apoptosis were recorded and testicular histological evaluations were performed. Wild type and GHSR knockout adult mice were subjected to creation of unilateral surgical cryptorchidism that is a model of heat-induced germ cell death. All mice were randomly separated into two groups: treatment with ghrelin or with saline. To assess testicular damage, the following endpoints were evaluated: testis weight, seminiferous tubule diameter, percentage of seminiferous tubules with spermatids and with multinucleated giant cells. Our findings indicated that endogenous ghrelin deletion altered male fertility. Moreover, ghrelin treatment ameliorated the testicular weight changes caused by surgically induced cryptorchidism. Testicular histopathology revealed a significant preservation of spermatogenesis and seminiferous tubule diameter in the ghrelin-treated cryptorchid testes of GHSR KO mice, suggesting that this protective effect of ghrelin was mediated by an unknown mechanism. In conclusion, ghrelin therapy could be useful to suppress testicular damage induced by hyperthermia, and future investigations will focus on the underlying mechanisms by which ghrelin mitigates testicular damage.


Assuntos
Criptorquidismo/patologia , Grelina/farmacologia , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Criptorquidismo/tratamento farmacológico , Criptorquidismo/etiologia , Modelos Animais de Doenças , Feminino , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Grelina/deficiência , Grelina/genética , Grelina/uso terapêutico , Glutationa/análise , Infertilidade Masculina/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Grelina/deficiência , Receptores de Grelina/genética , Espermatogênese/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
9.
Arch Toxicol ; 91(4): 1749-1762, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27592001

RESUMO

The twenty-first century vision for toxicology involves a transition away from high-dose animal studies to in vitro and computational models (NRC in Toxicity testing in the 21st century: a vision and a strategy, The National Academies Press, Washington, DC, 2007). This transition requires mapping pathways of toxicity by understanding how in vitro systems respond to chemical perturbation. Uncovering transcription factors/signaling networks responsible for gene expression patterns is essential for defining pathways of toxicity, and ultimately, for determining the chemical modes of action through which a toxicant acts. Traditionally, transcription factor identification is achieved via chromatin immunoprecipitation studies and summarized by calculating which transcription factors are statistically associated with up- and downregulated genes. These lists are commonly determined via statistical or fold-change cutoffs, a procedure that is sensitive to statistical power and may not be as useful for determining transcription factor associations. To move away from an arbitrary statistical or fold-change-based cutoff, we developed, in the context of the Mapping the Human Toxome project, an enrichment paradigm called information-dependent enrichment analysis (IDEA) to guide identification of the transcription factor network. We used a test case of activation in MCF-7 cells by 17ß estradiol (E2). Using this new approach, we established a time course for transcriptional and functional responses to E2. ERα and ERß were associated with short-term transcriptional changes in response to E2. Sustained exposure led to recruitment of additional transcription factors and alteration of cell cycle machinery. TFAP2C and SOX2 were the transcription factors most highly correlated with dose. E2F7, E2F1, and Foxm1, which are involved in cell proliferation, were enriched only at 24 h. IDEA should be useful for identifying candidate pathways of toxicity. IDEA outperforms gene set enrichment analysis (GSEA) and provides similar results to weighted gene correlation network analysis, a platform that helps to identify genes not annotated to pathways.


Assuntos
Estradiol/toxicidade , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética
11.
PLoS One ; 11(7): e0157997, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379522

RESUMO

The development of three-dimensional (3D) cultures is increasing, as they are able to provide the utility of in vitro models and the strength of testing in physiologically relevant systems. When cultured in a scaffold-free agarose hydrogel system, MCF-7 human breast carcinoma cells organize and develop into microtissues that contain a luminal space, in stark contrast to the flat morphology of MCF-7 two-dimensional (2D) monolayer cultures. Following exposure to 1nM E2, expression of typical estrogen-responsive genes, including progesterone receptor (PGR), PDZ containing domain 1 (PDZK1) and amphiregulin (AREG) is increased in both 2D and 3D cultures. When examining expression of other genes, particularly those involved in cell adhesion, there were large changes in 3D MCF-7 microtissues, with little to no change observed in the MCF-7 monolayer cultures. Together, these results indicate that while the initial estrogen-regulated transcriptional targets respond similarly in 2D and 3D cultures, there are large differences in activation of other pathways related to cell-cell interactions.


Assuntos
Neoplasias da Mama/genética , Técnicas de Cultura de Células/métodos , Estradiol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Mama/patologia , Adesão Celular/genética , Comunicação Celular/genética , Análise por Conglomerados , Estrogênios/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Células MCF-7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sefarose/metabolismo , Transdução de Sinais/genética
12.
Sci Rep ; 6: 28994, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456714

RESUMO

Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines.


Assuntos
Variação Genética/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa/métodos , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/genética , Humanos , Células MCF-7 , Repetições de Microssatélites/genética , Reprodutibilidade dos Testes
13.
PLoS One ; 11(4): e0153968, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082244

RESUMO

Post-operative adhesions are a critical problem in pelvic and abdominal surgery despite a multitude of studies dedicated to finding modalities to prevent their occurrence. Ghrelin administration promotes an anti-fibrotic response in a surgical mouse model of adhesion-induction, but the mechanisms mediating this effect have not been established. In the current study, the molecular mechanisms that underlie the anti-adhesion effect of ghrelin were investigated. Post-surgical adhesions were experimentally created in C57BL/6 wild-type mice via a combination of ischemic peritoneal buttons and cecal multiple abrasions. Ghrelin or saline intraperitoneal injections were given twice daily from two days before surgery to selected time points post-surgically to assess the phenotypic and molecular effects of treatment (1 day (n = 20), 4 days (n = 20) and 20 days (n = 40) after surgery). Endpoints included the scoring of adhesions and gene and protein expression analysis of pro-fibrogenic factors conducted on peritoneal ischemic tissue by quantitative PCR and Western blot. Ghrelin administration significantly reduced post-surgical adhesions and down-regulated pro-inflammatory gene and protein expression, including Tgfb3 and Tgfbr2. The up-regulation of inhibitory proteins Smad6 and Smad7 confirmed the ghrelin-induced blockage of TGF-ß signaling. Ghrelin is a candidate therapeutic drug for post-operative adhesion prevention, inhibiting inflammatory responses via blockage of the TGF-ß signaling pathway at the onset of surgery before the occurrence of the granulation-remodeling phase.


Assuntos
Grelina/química , Transdução de Sinais , Aderências Teciduais/prevenção & controle , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Peso Corporal , Diferenciação Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad6/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
14.
J Surg Res ; 201(1): 226-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850207

RESUMO

BACKGROUND: Peritoneal adhesion formation is a well-recognized consequence of abdominal and pelvic surgery, causing infertility, chronic pelvic pain, and intestinal obstruction. We hypothesized that ghrelin, a 28-amino acid peptide predominantly found in the stomach, plays an important role in preventing postoperative surgical adhesions. The purpose of this study was to develop a new surgical peritoneal adhesion model to define the role that ghrelin plays in wound healing and adhesion formation. MATERIALS AND METHODS: C57BL/6 wild-type mice (n = 40) and growth hormone secretagogue receptor-knockout (GHSR KO) mice (n = 20) underwent a midline laparotomy to establish a peritoneal adhesion model characterized by the combination of two different techniques: ischemic peritoneal buttons and cecal multiple abrasion. All mice received intraperitoneal injections with ghrelin (0.16 mg/kg) or saline twice daily for 20 d after surgery. Peritoneal ischemic buttons were harvested to determine protein expression of collagen (Masson trichrome, picrosirius red stain, and Western blot). RESULTS: The novel mouse model demonstrated consistent and easily reproducible formation of intra-abdominal adhesions. Ghrelin administration significantly reduced postoperative adhesion formation (P < 0.001) in wild-type mice. The antifibrotic effect of ghrelin in wild-type mice was confirmed by measuring collagen I protein levels via Western blot analysis. The anti-adhesion effect of ghrelin seen in wild-type mice was not detected in GHSR KO mice demonstrating that this effect is mediated by the GHSR-1a receptor. CONCLUSIONS: Ghrelin administration may improve surgical outcome by reducing peritoneal adhesion formation and fibrotic response in a mouse model.


Assuntos
Modelos Animais de Doenças , Grelina/uso terapêutico , Receptores de Grelina/genética , Aderências Teciduais/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Avaliação Pré-Clínica de Medicamentos , Grelina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritônio/efeitos dos fármacos , Peritônio/metabolismo
15.
Toxicol Lett ; 248: 1-8, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-26921789

RESUMO

In the development of human cell-based assays, 3-dimensional (3D) cell culture models are intriguing as they are able to bridge the gap between animal models and traditional two-dimensional (2D) cell culture. Previous work has demonstrated that MCF-7 human breast carcinoma cells cultured in a 3D scaffold-free culture system self-assemble and develop into differentiated microtissues that possess a luminal space. Exposure to estradiol for 7 days decreased lumen formation in MCF-7 microtissues, altered microtissue morphology and altered expression of genes involved in estrogen signaling, cell adhesion and cell cycle regulation. Exposure to receptor-specific agonists for estrogen receptor alpha, estrogen receptor beta and g-protein coupled estrogen receptor resulted in unique, receptor-specific phenotypes and gene expression signatures. The use of a differentiated scaffold-free 3D culture system offers a unique opportunity to study the phenotypic and molecular changes associated with exposure to estrogenic compounds.


Assuntos
Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Estrogênios/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Feminino , Humanos , Células MCF-7 , Transcriptoma
16.
Exp Lung Res ; 41(9): 477-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495956

RESUMO

BACKGROUND: Human fetal lung xenografts display an unusual pattern of non-sprouting, plexus-forming angiogenesis that is reminiscent of the dysmorphic angioarchitecture described in bronchopulmonary dysplasia (BPD). The aim of this study was to determine the clinicopathological correlates, growth characteristics and molecular regulation of this aberrant form of graft angiogenesis. METHODS: Fetal lung xenografts, derived from 12 previable fetuses (15 to 22 weeks' gestation) and engrafted in the renal subcapsular space of SCID-beige mice, were analyzed 4 weeks posttransplantation for morphology, vascularization, proliferative activity and gene expression. RESULTS: Focal plexus-forming angiogenesis (PFA) was observed in 60/230 (26%) of xenografts. PFA was characterized by a complex network of tortuous nonsprouting vascular structures with low endothelial proliferative activity, suggestive of intussusceptive-type angiogenesis. There was no correlation between the occurrence of PFA and gestational age or time interval between delivery and engraftment. PFA was preferentially localized in the relatively hypoxic central subcapsular area. Microarray analysis suggested altered expression of 15 genes in graft regions with PFA, of which 7 are known angiogenic/lymphangiogenic regulators and 5 are known hypoxia-inducible genes. qRT-PCR analysis confirmed significant upregulation of SULF2, IGF2, and HMOX1 in graft regions with PFA. CONCLUSION: These observations in human fetal lungs ex vivo suggest that postcanalicular lungs can switch from sprouting angiogenesis to an aberrant intussusceptive-type of angiogenesis that is highly reminiscent of BPD-associated dysangiogenesis. While circumstantial evidence suggests hypoxia may be implicated, the exact triggering mechanisms, molecular regulation and clinical implications of this angiogenic switch in preterm lungs in vivo remain to be determined.


Assuntos
Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Transplante de Tecido Fetal/efeitos adversos , Transplante de Pulmão/efeitos adversos , Microvasos/patologia , Neovascularização Patológica , Animais , Antígenos de Neoplasias/metabolismo , Displasia Broncopulmonar/genética , Anidrase Carbônica IX , Anidrases Carbônicas/metabolismo , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos SCID , Microvasos/metabolismo , Neovascularização Patológica/genética
17.
PLoS One ; 10(8): e0135426, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267486

RESUMO

Three-dimensional (3D) cultures are increasing in use because of their ability to represent in vivo human physiology when compared to monolayer two-dimensional (2D) cultures. When grown in 3D using scaffold-free agarose hydrogels, MCF-7 human breast cancer cells self-organize to form directionally-oriented microtissues that contain a luminal space, reminiscent of the in vivo structure of the mammary gland. When compared to MCF-7 cells cultured in 2D monolayer culture, MCF-7 microtissues exhibit increased mRNA expression of luminal epithelial markers keratin 8 and keratin 19 and decreased expression of basal marker keratin 14 and the mesenchymal marker vimentin. These 3D MCF-7 microtissues remain responsive to estrogens, as demonstrated by induction of known estrogen target mRNAs following exposure to 17ß-estradiol. Culture of MCF-7 cells in scaffold-free conditions allows for the formation of more differentiated, estrogen-responsive structures that are a more relevant system for evaluation of estrogenic compounds than traditional 2D models.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais , Estradiol/farmacologia , Humanos , Hidrogéis/farmacologia , Queratinas/genética , Queratinas/metabolismo , Células MCF-7 , Vimentina/genética , Vimentina/metabolismo
18.
Cancer Microenviron ; 8(2): 101-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26239082

RESUMO

It is well-established that upregulation of drug efflux pumps leads to multi-drug resistance. Less is known about the role of the architecture of the tumor microenvironment in this process: how the location of pump expressing cells influences drug exposure to cancerous as well as non-cancerous cells. Here, we report a 3D in vitro model of spheroids with mixtures of cells expressing high and low levels of ABCG2, quantifying pump activity by the ability to reject the fluorescent dye Hoechst 33342. With respect to the organization of the mixed spheroids, three different architectures were observed: 1) high-expressing ABCG2 cells located in the spheroid core surrounded by low-expressing cells, 2) high-expressing ABCG2 cells intermixed with low-expressing cells and 3) high-expressing ABCG2 cells surrounding a core of low-expressing cells. When high-expressing ABCG2 cells were in the core or intermixed, Hoechst uptake was directly proportional to the percentage of ABCG2 cells. When high-expressing ABCG2 cell formed an outer coating surrounding spheroids, small numbers of ABCG2 cells were disproportionately effective at inhibiting uptake. Specific inhibitors of the ABCG2 transporter eliminated the effect of this coating. Confocal microscopy of spheroids revealed the location of high- and low-expressing cells, and Hoechst fluorescence revealed that the ABCG2-dependant drug concentration in the cancer microenvironment is influenced by pump expression level and distribution among the cells within a tissue. In addition to providing a 3D model for further investigation into multicellular drug resistance, these data show that the location of ABCG2-expressing cells can control drug exposure within the tumor microenvironment.

19.
ALTEX ; 32(2): 112-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742299

RESUMO

The Human Toxome Project, funded as an NIH Transformative Research grant 2011-2016, is focused on developing the concepts and the means for deducing, validating and sharing molecular pathways of toxicity (PoT). Using the test case of estrogenic endocrine disruption, the responses of MCF-7 human breast cancer cells are being phenotyped by transcriptomics and mass-spectroscopy-based metabolomics. The bioinformatics tools for PoT deduction represent a core deliverable. A number of challenges for quality and standardization of cell systems, omics technologies and bioinformatics are being addressed. In parallel, concepts for annotation, validation and sharing of PoT information, as well as their link to adverse outcomes, are being developed. A reasonably comprehensive public database of PoT, the Human Toxome Knowledge-base, could become a point of reference for toxicological research and regulatory test strategies.


Assuntos
Toxicologia/métodos , Alternativas aos Testes com Animais , Animais , Bases de Dados Factuais , Disruptores Endócrinos , Humanos , Metabolômica , Camundongos , Testes de Toxicidade/métodos , Transcriptoma
20.
PLoS One ; 10(3): e0122290, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799167

RESUMO

Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure.


Assuntos
Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Estrogênios/metabolismo , Próstata/metabolismo , Próstata/patologia , Animais , Biomarcadores/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Ilhas de CpG , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Fenótipo , Próstata/efeitos dos fármacos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA