Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
2.
Mol Pharmacol ; 72(1): 197-207, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452495

RESUMO

Mutations occurring in the CFTR gene, encoding for the cystic fibrosis transmembrane conductance regulator chloride channel, cause cystic fibrosis (CF). Mutations belonging to class II, such as DeltaPhe508, give rise to a protein with both a defective maturation and altered channel gating. Mutations belonging to class III, such as G551D and G1349D, cause only a gating defect. We have previously identified antihypertensive 1,4-dihydropyridines (DHPs), a class of drugs that block voltage-dependent Ca(2+) channels, as effective potentiators of CFTR gating, able to correct the defective activity of CFTR mutants (Mol Pharmacol 68:1736-1746, 2005). However, optimization of potency for CFTR versus Ca(2+) channels is required to design selective compounds for CFTR pharmacotherapy. In the present study, we have established DHP structure-activity relationship for both CFTR potentiation and Ca(2+) channel inhibition using cell-based assays for both types of channels. A panel of 333 felodipine analogs was studied to understand the effect of various substitutions and modifications in the DHP scaffold. Our results show that alkyl substitutions at the para position of the 4-phenyl ring lead to compounds with very low activity on Ca(2+) channels and strong effect as potentiators on the DeltaPhe508, G551D, and G1349D CFTR mutants.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cloreto/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA