Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574823

RESUMO

Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.


Assuntos
Proteínas Ferro-Enxofre , Biologia Sintética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Biologia Sintética/métodos , Vias Biossintéticas , Nitrogenase/metabolismo , Nitrogenase/genética , Enxofre/metabolismo , Ferredoxinas/metabolismo , Ferredoxinas/genética
2.
Elife ; 112022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244541

RESUMO

Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Filogenia , Enxofre/metabolismo
3.
J Bacteriol ; 195(14): 3173-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23667235

RESUMO

Persistence is a phenomenon whereby a subpopulation of bacterial cells enters a transient growth-arrested state that confers antibiotic tolerance. While entrance into persistence has been linked to the activities of toxin proteins, the molecular mechanisms by which toxins induce growth arrest and the persistent state remain unclear. Here, we show that overexpression of the protein kinase HipA in Escherichia coli triggers growth arrest by activating synthesis of the alarmone guanosine tetraphosphate (ppGpp) by the enzyme RelA, a signal typically associated with amino acid starvation. We further demonstrate that chemically suppressing ppGpp synthesis with chloramphenicol relieves inhibition of DNA replication initiation and RNA synthesis in HipA-arrested cells and restores vulnerability to ß-lactam antibiotics. HipA-arrested cells maintain glucose uptake and oxygen consumption and accumulate amino acids as a consequence of translational inhibition. We harness the active metabolism of HipA-arrested cells to provide a bacteriophage-resistant platform for the production of biotechnologically relevant compounds, which may represent an innovative solution to the costly problem of phage contamination in industrial fermentations.


Assuntos
Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Ligases/metabolismo , beta-Lactamas/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
4.
Nature ; 453(7192): 184-9, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464735

RESUMO

The reverse transcriptase of human immunodeficiency virus (HIV) catalyses a series of reactions to convert the single-stranded RNA genome of HIV into double-stranded DNA for host-cell integration. This task requires the reverse transcriptase to discriminate a variety of nucleic-acid substrates such that active sites of the enzyme are correctly positioned to support one of three catalytic functions: RNA-directed DNA synthesis, DNA-directed DNA synthesis and DNA-directed RNA hydrolysis. However, the mechanism by which substrates regulate reverse transcriptase activities remains unclear. Here we report distinct orientational dynamics of reverse transcriptase observed on different substrates with a single-molecule assay. The enzyme adopted opposite binding orientations on duplexes containing DNA or RNA primers, directing its DNA synthesis or RNA hydrolysis activity, respectively. On duplexes containing the unique polypurine RNA primers for plus-strand DNA synthesis, the enzyme can rapidly switch between the two orientations. The switching kinetics were regulated by cognate nucleotides and non-nucleoside reverse transcriptase inhibitors, a major class of anti-HIV drugs. These results indicate that the activities of reverse transcriptase are determined by its binding orientation on substrates.


Assuntos
Replicação do DNA , DNA/biossíntese , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV/enzimologia , RNA/metabolismo , Transcrição Reversa , Sítios de Ligação , Catálise , Primers do DNA/genética , Primers do DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , HIV/genética , Hidrólise , Ligantes , RNA/genética , Especificidade por Substrato , Moldes Genéticos
5.
Proc Natl Acad Sci U S A ; 100(16): 9302-7, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12869691

RESUMO

How RNA molecules fold into functional structures is a problem of great significance given the expanding list of essential cellular RNA enzymes and the increasing number of applications of RNA in biotechnology and medicine. A critical step toward solving the RNA folding problem is the characterization of the associated transition states. This is a challenging task in part because the rugged energy landscape of RNA often leads to the coexistence of multiple distinct structural transitions. Here, we exploit single-molecule fluorescence spectroscopy to follow in real time the equilibrium transitions between conformational states of a model RNA enzyme, the hairpin ribozyme. We clearly distinguish structural transitions between effectively noninterchanging sets of unfolded and folded states and characterize key factors defining the transition state of an elementary folding reaction where the hairpin ribozyme's two helical domains dock to make several tertiary contacts. Our single-molecule experiments in conjunction with site-specific mutations and metal ion titrations show that the two RNA domains are in a contact or close-to-contact configuration in the transition state even though the native tertiary contacts are at most partially formed. Such a compact transition state without well formed tertiary contacts may be a general property of elementary RNA folding reactions.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Relação Dose-Resposta a Droga , Cinética , Magnésio/farmacologia , Modelos Teóricos , Mutação , Nepovirus/genética , Distribuição de Poisson , Ligação Proteica , RNA Catalítico/química , Espectrometria de Fluorescência , Termodinâmica , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA