Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 71(6): 1901-1912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38231822

RESUMO

OBJECTIVE: Pathologists rely on histochemical stains to impart contrast in thin translucent tissue samples, revealing tissue features necessary for identifying pathological conditions. However, the chemical labeling process is destructive and often irreversible or challenging to undo, imposing practical limits on the number of stains that can be applied to the same tissue section. Here we present an automated label-free whole slide scanner using a PARS microscope designed for imaging thin, transmissible samples. METHODS: Peak SNR and in-focus acquisitions are achieved across entire tissue sections using the scattering signal from the PARS detection beam to measure the optimal focal plane. Whole slide images (WSI) are seamlessly stitched together using a custom contrast leveling algorithm. Identical tissue sections are subsequently H&E stained and brightfield imaged. The one-to-one WSIs from both modalities are visually and quantitatively compared. RESULTS: PARS WSIs are presented at standard 40x magnification in malignant human breast and skin samples. We show correspondence of subcellular diagnostic details in both PARS and H&E WSIs and demonstrate virtual H&E staining of an entire PARS WSI. The one-to-one WSI from both modalities show quantitative similarity in nuclear features and structural information. CONCLUSION: PARS WSIs are compatible with existing digital pathology tools, and samples remain suitable for histochemical, immunohistochemical, and other staining techniques. SIGNIFICANCE: This work is a critical advance for integrating label-free optical methods into standard histopathology workflows.


Assuntos
Neoplasias da Mama , Microscopia , Humanos , Microscopia/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Pele/diagnóstico por imagem , Pele/química , Pele/citologia , Fótons , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador/métodos
2.
Sci Rep ; 12(1): 10296, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717539

RESUMO

Histopathological visualizations are a pillar of modern medicine and biological research. Surgical oncology relies exclusively on post-operative histology to determine definitive surgical success and guide adjuvant treatments. The current histology workflow is based on bright-field microscopic assessment of histochemical stained tissues and has some major limitations. For example, the preparation of stained specimens for brightfield assessment requires lengthy sample processing, delaying interventions for days or even weeks. Therefore, there is a pressing need for improved histopathology methods. In this paper, we present a deep-learning-based approach for virtual label-free histochemical staining of total-absorption photoacoustic remote sensing (TA-PARS) images of unstained tissue. TA-PARS provides an array of directly measured label-free contrasts such as scattering and total absorption (radiative and non-radiative), ideal for developing H&E colorizations without the need to infer arbitrary tissue structures. We use a Pix2Pix generative adversarial network to develop visualizations analogous to H&E staining from label-free TA-PARS images. Thin sections of human skin tissue were first virtually stained with the TA-PARS, then were chemically stained with H&E producing a one-to-one comparison between the virtual and chemical staining. The one-to-one matched virtually- and chemically- stained images exhibit high concordance validating the digital colorization of the TA-PARS images against the gold standard H&E. TA-PARS images were reviewed by four dermatologic pathologists who confirmed they are of diagnostic quality, and that resolution, contrast, and color permitted interpretation as if they were H&E. The presented approach paves the way for the development of TA-PARS slide-free histological imaging, which promises to dramatically reduce the time from specimen resection to histological imaging.


Assuntos
Microscopia , Tecnologia de Sensoriamento Remoto , Humanos , Microscopia/métodos , Microtomia , Coloração e Rotulagem , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA