Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 573(7774): 430-433, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511695

RESUMO

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Assuntos
Linfócitos T CD8-Positivos , Fibrose Endomiocárdica/terapia , Imunoterapia Adotiva , Animais , Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrose Endomiocárdica/imunologia , Fibroblastos/imunologia , Humanos , Masculino , Camundongos , Ovalbumina/imunologia , Cicatrização
2.
N Engl J Med ; 370(3): 245-53, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24325358

RESUMO

The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.


Assuntos
Plaquetas/patologia , Síndrome da Plaqueta Cinza/genética , Megacariócitos/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Medula Óssea/patologia , Feminino , Genes Dominantes , Síndrome da Plaqueta Cinza/patologia , Humanos , Masculino , Linhagem , Células-Tronco , Trombocitopenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA