Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Xenotransplantation ; 30(4): e12803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120823

RESUMO

Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Feminino , Animais , Suínos , Humanos , Coelhos , Citomegalovirus/genética , Transplante Heterólogo , Infecções por Citomegalovirus/diagnóstico , Reação em Cadeia da Polimerase , Peptídeos
2.
Res Pract Thromb Haemost ; 5(1): 111-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33537535

RESUMO

BACKGROUND: Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low. OBJECTIVES: To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA-binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre-B-cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc). METHODS: To avoid off-target effects, we generated iPSCs carrying the reverse tetracycline-responsive transactivator M2 (rtTA-M2) in the Rosa26 locus and expressed the factors from Tet-inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation. RESULTS: Overexpression of GATA1 and Pbx1 increased MK output 2- to 2.5-fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro-generated platelets were functional in spreading on fibrinogen or collagen-related peptide. CONCLUSION: We demonstrate that the use of rtTA-M2 transgenic iPSCs transduced with Tet-inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production.

3.
Primate Biol ; 7(1): 5-12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760782

RESUMO

A spontaneous reactive mesothelial hyperplasia occurred in a female, 15.7-year-old African green monkey (grivet; Chlorocebus aethiops). At necropsy, massive effusions were found in the abdomen, the thorax, and the pericardium. Additionally, multiple small, beige-gray nodules were detected on the serosal surfaces of the abdominal organs. Histopathologically, the mesothelial cells resembled the epithelioid subtype of a mesothelioma, but no infiltrative or invasive growth could be demonstrated. The mesothelial cells on the thoracis, liver, and intestinal serosa were accompanied by chronic serositis. Mesothelial cells expressed cytokeratin, vimentin, calretinin, desmin, Wilms Tumor 1 (WT-1) protein, and epithelial membrane antigen (EMA). Cells were negative for carcinoembryonic antigen (CEA), cluster of differentiation 15 (CD15), and podoplanin. Ultrastructurally, cells revealed a moderate amount of microvilli of medium length, perinuclear tonofilament bundles, and long desmosomes. In fluorescence in situ hybridization (FISH) for the detection of characteristic gene loss (p16; CDKN2A), NF2, and MTAP, no deletions were detected. No asbestos fibers and no presence of Simian virus 40 antigen (SV40) could be demonstrated.

4.
Cells ; 9(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823751

RESUMO

The N-terminus of the hepatitis B virus (HBV) large surface protein (LHB) differs with respect to genotypes. Compared to the amino terminus of genotype (Gt)D, in GtA, GtB and GtC, an additional identical 11 amino acids (aa) are found, while GtE and GtG share another similar 10 aa. Variants of GtB and GtC affecting this N-terminal part are associated with hepatoma formation. Deletion of these amino-terminal 11 aa in GtA reduces the amount of LHBs and changes subcellular accumulation (GtA-like pattern) to a dispersed distribution (GtD-like pattern). Vice versa, the fusion of the GtA-derived N-terminal 11 aa to GtD causes a GtA-like phenotype. However, insertion of the corresponding GtE-derived 10 aa to GtD has no effect. Deletion of these 11aa decreases filament size while neither the number of released viral genomes nor virion size and infectivity are affected. A negative regulatory element (aa 2-8) and a dominant positive regulatory element (aa 9-11) affecting the amount of LHBs were identified. The fusion of this motif to eGFP revealed that the effect on protein amount and subcellular distribution is not restricted to LHBs. These data identify a novel region in the N-terminus of LHBs affecting the amount and subcellular distribution of LHBs and identify release-promoting and -inhibiting aa residues within this motive.


Assuntos
Genótipo , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/sangue , Morfogênese , Domínios Proteicos/genética , Precursores de Proteínas/genética , Proteínas do Envelope Viral/química , Vírion/crescimento & desenvolvimento , Adulto , Negro ou Afro-Americano/genética , Povo Asiático/genética , Linhagem Celular Tumoral , DNA Viral/sangue , Feminino , Hepatite B Crônica/etnologia , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Envelope Viral/metabolismo , População Branca/genética
5.
Med Microbiol Immunol ; 209(4): 447-459, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535702

RESUMO

Tetraspanins are master organizers of the cell membrane. Recent evidence suggests that tetraspanins themselves may become crowded by virus particles and that these crowds/aggregates co-internalize with the viral particles. Using microscopy, we studied human papillomavirus (HPV) type 16-dependent aggregates on the cell surface of tetraspanin overexpressing keratinocytes. We find that aggregates are (1) rich in at least two different tetraspanins, (2) three-dimensional architectures extending up to several micrometers into the cell, and (3) decorated intracellularly by filamentous actin. Moreover, in cells not overexpressing tetraspanins, we note that obscurin-like protein 1 (OBSL1), which is thought to be a cytoskeletal adaptor, associates with filamentous actin. We speculate that HPV contact with the cell membrane could trigger the formation of a large tetraspanin web. This web may couple the virus contact site to the intracellular endocytic actin machinery, possibly involving the cytoskeletal adaptor protein OBSL1. Functionally, such a tetraspanin web could serve as a virus entry platform, which is co-internalized with the virus particle.


Assuntos
Actinas/fisiologia , Proteínas do Citoesqueleto/fisiologia , Papillomavirus Humano 16/fisiologia , Tetraspanina 24/fisiologia , Tetraspanina 30/fisiologia , Endocitose , Células HaCaT/virologia , Células HeLa/ultraestrutura , Células HeLa/virologia , Células Hep G2/virologia , Humanos , Microscopia Confocal , Microscopia Eletrônica , Infecções por Papillomavirus/virologia , Plaquinas/fisiologia , Vírion/fisiologia , Vírion/ultraestrutura , Internalização do Vírus
6.
Aliment Pharmacol Ther ; 50(8): 940-954, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240738

RESUMO

BACKGROUND: Naturally occurring variants with deletions or mutations in the C-terminal PreS1 domain from hepatitis B virus (HBV) chronically infected patients have been shown to promote HBsAg retention, inhibit HBsAg secretion and change the extracellular appearance of PreS1-containing HBV particles (filaments and virions). AIMS: To study the impact of N-terminal deletion in preS1 domain on viral secretion and morphogenesis. METHODS: An HBV mutant with 15 amino acids (aa 25-39) deletion in N-terminal preS1 was isolated. Intracellular and extracellular HBsAg were quantified by Western blot. Subcellular HBsAg distribution was analysed by confocal laser scanning microscopy. The viral morphology was characterised by sucrose density gradient ultracentrifugation, Western blot, electron microscopy, HBV mixed ELISA and HBV particle gel essay. RESULTS: Expression of this mutant genome released higher amounts of HBsAg in the form of shorter filaments. A significant fraction of semi-enveloped virions was observed in the supernatant that has been unprecedented so far. Stepwise insertion of aa 25-31, aa 32-39 and aa 25-39 increased the length of filaments. The rescue of aa 25-31 and aa 25-39 drastically reduced the amounts of extracellular HBsAg and semi-enveloped virions, while such effects could not be observed after insertion of aa 32-39, arguing against a simple spacer function of this region. The deletion and rescued mutants do not differ in subcellular HBsAg distribution and colocalisation with ER, Golgi and multivesicular bodies markers arguing against differences in release pathways. CONCLUSION: N-terminal PreS1-domain (aa 25-31) determines HBsAg secretion and triggers proper assembly of PreS1-containing particles.


Assuntos
Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Mutação/genética , Precursores de Proteínas/genética , Proteínas do Envelope Viral/genética , Linhagem Celular Tumoral , Hepatite B/diagnóstico , Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Humanos , Precursores de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo
7.
Micron ; 108: 6-10, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499397

RESUMO

skNAC (skeletal and heart muscle-specific variant of nascent polypeptide-associated complex) and Smyd1 (SET and MYND domain-containing 1) form a protein dimer which is specific for striated muscle cells. Its function is largely unknown. On the one hand, skNAC-Smyd1 appears to control transcriptional processes in the nucleus, on the other hand, specifically at later stages of myogenic differentiation, both proteins translocate to the sarcoplasm and at least Smyd1 specifically associates with sarcomeric structures and might control myofibrillogenesis and/or sarcomere architecture. Here, using immunofluorescence and electron microscopy, we analyzed sarcomere formation and myofibril organization after siRNA-mediated knockdown of skNAC or Smyd1 expression in murine C2C12 skeletal muscle cells. We found that inhibition of skNAC or Smyd1 expression indeed prevents myofibrillogenesis and sarcomere formation, leading to a disorganized array of myofilaments predominantly within the region immediately beneath the plasma membrane.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Chaperonas Moleculares/biossíntese , Desenvolvimento Muscular/genética , Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Fatores de Transcrição/biossíntese , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Imunofluorescência , Camundongos , Microscopia Eletrônica , Chaperonas Moleculares/genética , Proteínas Musculares/genética , Músculo Estriado/citologia , Miofibrilas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Sarcômeros/genética , Fatores de Transcrição/genética
8.
Sci Rep ; 7(1): 16892, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203786

RESUMO

Recombinant vaccine strain-derived measles virus (MV) is clinically tested both as vaccine platform to protect against other pathogens and as oncolytic virus for tumor treatment. To investigate the potential synergism in anti-tumoral efficacy of oncolytic and vaccine properties, we chose Ovalbumin and an ideal tumor antigen, claudin-6, for pre-clinical proof of concept. To enhance immunogenicity, both antigens were presented by retroviral virus-like particle produced in situ during MV-infection. All recombinant MV revealed normal growths, genetic stability, and proper expression and presentation of both antigens. Potent antigen-specific humoral and cellular immunity were found in immunized MV-susceptible IFNAR-/--CD46Ge mice. These immune responses significantly inhibited metastasis formation or increased therapeutic efficacy compared to control MV in respective novel in vivo tumor models using syngeneic B16-hCD46/mCLDN6 murine melanoma cells. These data indicate the potential of MV to trigger selected tumor antigen-specific immune responses on top of direct tumor lysis for enhanced efficacy.


Assuntos
Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vírus do Sarampo/genética , Melanoma Experimental/terapia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Autoanticorpos/sangue , Autoanticorpos/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Chlorocebus aethiops , Claudinas/genética , Claudinas/imunologia , Claudinas/metabolismo , Imunidade Celular , Imunidade Humoral , Interferon gama/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Melanoma Experimental/imunologia , Camundongos , Camundongos Transgênicos , Terapia Viral Oncolítica , Ovalbumina/genética , Ovalbumina/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Células Vero
9.
Sci Rep ; 7(1): 9630, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851900

RESUMO

Vaccine platforms that can be flexibly loaded with antigens can contribute to decrease response time to emerging infections. For many pathogens and chronic infections, induction of a robust cytotoxic T lymphocytes-mediated response is desirable to control infection. Antigen delivery into the cytoplasm of antigen presenting cells favors induction of cytotoxic T cells. By fusion of the cell-permeable translocation motif (TLM)-peptide to the capsid-forming core protein of hepatitis B virus, and by insertion of the strep-tag in the spike tip (a domain that protrudes from the surface of the capsid), cell-permeable carrier capsids were generated that can be flexibly loaded with various antigens. Loading with antigens was demonstrated by electron microscopy, density gradient centrifugation and surface plasmon resonance spectroscopy. Confocal immunofluorescence microscopy showed that cell-permeable carrier capsids mediate transfer of cargo antigen into the cytoplasm. Using cell-permeable carrier capsids loaded with ovalbumin as model antigen, activation of antigen presenting cells and ovalbumin-specific CD8+ T-cells, which correlates with enhanced specific killing activity, was found. This demonstrates the capacity of TLM-carrier-capsids to serve as universal antigen carrier to deliver antigens into the cytoplasm of antigen presenting cells, which leads to enhanced MHC class I-mediated presentation and induction of antigen-specific cytotoxic T lymphocytes response.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Capsídeo/metabolismo , Citotoxicidade Imunológica , Portadores de Fármacos/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Ovalbumina/imunologia , Animais , Antígenos/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/genética , Camundongos Endogâmicos C57BL , Ovalbumina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
10.
J Virol ; 90(24): 11181-11196, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707921

RESUMO

Hepatitis C virus (HCV) particles are described as lipoviroparticles which are released similarly to very-low-density lipoproteins (VLDLs). However, the release mechanism is still poorly understood; the canonical endoplasmic reticulum-Golgi intermediate compartment (ERGIC) pathway as well as endosome-dependent release has been proposed. Recently, the role of exosomes in the transmission of HCV has been reported. Only a minor fraction of the de novo-synthesized lipoviroparticles is released by the infected cell. To investigate the relevance of multivesicular bodies (MVBs) for viral morphogenesis and release, the MVB inhibitor U18666A was used. Intracellular trafficking was analyzed by confocal microscopy and electron microscopy. Moreover, an mCherry-tagged HCV variant was used. Conditions were established that enable U18666A-dependent inhibition of MVBs without affecting viral replication. Under these conditions, significant inhibition of the HCV release was observed. The assembly of viral particles is not affected. In U18666A-treated cells, intact infectious viral particles accumulate in CD63-positive exosomal structures and large dysfunctional lysosomal structures (multilamellar bodies). These retained particles possess a lower density, reflecting a misloading with lipids. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway. Endosomes facilitate the sorting of HCV particles for release or degradation. IMPORTANCE: There are still a variety of open questions regarding morphogenesis and release of hepatitis C virus. The HCV-infected cell produces significant more viral particles that are released, raising the question about the fate of the nonreleased particles. Moreover, the relevance of the endosomal pathway for the release of HCV is under debate. Use of the MVB (multivesicular body) inhibitor U18666A enabled a detailed analysis of the impact of MVBs for viral morphogenesis and release. It was revealed that infectious, fully assembled HCV particles are either MVB-dependently released or intracellularly degraded by the lysosome. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway independent from the constitutive secretory pathway. Our study describes a so-far-unprecedented cross talk between two pathways regulating on the one hand the release of infectious viral particles and on the other hand the intracellular degradation of nonreleased particles.


Assuntos
Androstenos/farmacologia , Anticolesterolemiantes/farmacologia , Exossomos/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/metabolismo , Exossomos/ultraestrutura , Exossomos/virologia , Expressão Gênica , Genes Reporter , Hepacivirus/fisiologia , Hepacivirus/ultraestrutura , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/ultraestrutura , Corpos Multivesiculares/virologia , Vírion/efeitos dos fármacos , Vírion/fisiologia , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Proteína Vermelha Fluorescente
11.
Sci Rep ; 6: 32337, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27578500

RESUMO

Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Infecções por Papillomavirus/genética , Sinteninas/genética , Tetraspanina 30/genética , Neoplasias do Colo do Útero/genética , Proteínas de Ligação ao Cálcio/química , Carcinogênese/genética , Proteínas de Ciclo Celular/química , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Feminino , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/patogenicidade , Papillomavirus Humano 31/genética , Papillomavirus Humano 31/patogenicidade , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Ligação Proteica , Transporte Proteico/genética , Tetraspanina 30/química , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
12.
Infect Immun ; 83(11): 4335-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303391

RESUMO

Photobacterium damselae subsp. damselae, an important pathogen of marine animals, may also cause septicemia or hyperaggressive necrotizing fasciitis in humans. We previously showed that hemolysin genes are critical for virulence of this organism in mice and fish. In the present study, we characterized the hlyA gene product, a putative small ß-pore-forming toxin, and termed it phobalysin P (PhlyP), for "photobacterial lysin encoded on a plasmid." PhlyP formed stable oligomers and small membrane pores, causing efflux of K(+), with no significant leakage of lactate dehydrogenase but entry of vital dyes. The latter feature distinguished PhlyP from the related Vibrio cholerae cytolysin. Attack by PhlyP provoked a loss of cellular ATP, attenuated translation, and caused profound morphological changes in epithelial cells. In coculture experiments with epithelial cells, Photobacterium damselae subsp. damselae led to rapid hemolysin-dependent membrane permeabilization. Unexpectedly, hemolysins also promoted the association of P. damselae subsp. damselae with epithelial cells. The collective observations of this study suggest that membrane-damaging toxins commonly enhance bacterial adherence.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Photobacterium/metabolismo , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Células Epiteliais/microbiologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Hemólise , Humanos , Dados de Sequência Molecular , Photobacterium/química , Photobacterium/genética , Coelhos , Alinhamento de Sequência
13.
J Virol ; 90(7): 3330-41, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719264

RESUMO

UNLABELLED: In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE: This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Hepatite B/metabolismo , Corpos Multivesiculares/metabolismo , Fatores de Transcrição/metabolismo , Liberação de Vírus/fisiologia , Androstenos/farmacologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células Hep G2 , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Microscopia Confocal , Microscopia Eletrônica , Corpos Multivesiculares/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Core Viral/deficiência , Proteínas do Core Viral/genética
14.
J Virol ; 87(13): 7765-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616662

RESUMO

Human papillomavirus type 18 (HPV18), one of the HPVs with malignant potential, enters cells by an unknown endocytic mechanism. The key cellular requirements for HPV18 endocytosis were tested in comparison to those for HPV16 and -31 endocytoses. HPV18 (like HPV16 and -31) entry was independent of clathrin, caveolin, dynamin, and lipid rafts but required actin polymerization and tetraspanin CD151, and the viruses were routed to the same LAMP-1-positive compartment. Hence, the viruses shared similar cellular requirements for endocytic entry.


Assuntos
Endocitose/fisiologia , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 18/fisiologia , Papillomavirus Humano 31/fisiologia , Internalização do Vírus , Actinas/metabolismo , Dinamina II , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Microdomínios da Membrana , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Polimerização , Tetraspanina 24/metabolismo
15.
J Virol ; 87(11): 6246-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536664

RESUMO

Cell entry of enveloped viruses is initiated by attachment to the virus receptor followed by fusion between the virus and host cell membranes. Measles virus (MV) attachment to its receptor is mediated by the hemagglutinin (H), which is thought to produce conformational changes in the membrane fusion protein (F) that trigger insertion of its fusion peptide into the target cell membrane. Here, we uncoupled receptor attachment and the fusion-helper function of H by introducing Y481A, R533A, S548L, and F549S mutations into the viral attachment protein that made it blind to its normal receptors. An artificial receptor attachment protein specific for Her2/neu was incorporated into the membranes of pseudotyped lentivirus particles as a separate transmembrane protein along with the F protein. Surprisingly, these particles entered efficiently into Her2/neu-positive SK-OV-3 as well as CHO-Her2 cells. Cell entry was independent of endocytosis but strictly dependent on the presence of H. H-specific monoclonal antibodies, as well as a mutation in H interfering with H/F cooperation, blocked cell entry. The particles mediated stable and specific transfer of reporter genes into Her2/neu-positive human tumor cells also in vivo, while exhibiting improved infectivity and higher titers than Her2/neu-targeted vectors displaying the targeting domain on H. Extending the current model of MV cell entry, the data suggest that receptor binding of H is not required for its fusion-helper function but that particle-cell contact in general may be sufficient to induce the conformational changes in the H/F complex and activate membrane fusion.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/fisiologia , Sarampo/metabolismo , Receptor ErbB-2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Feminino , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Camundongos , Camundongos SCID , Receptor ErbB-2/genética , Receptores Virais/genética , Ligação Viral
16.
J Biol Chem ; 287(42): 35299-35317, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22915583

RESUMO

The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic α-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2α and CReP, regulators of translation initiation.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Proteína Fosfatase 1/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Membrana Celular/genética , Endossomos/genética , Células Epiteliais/citologia , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Células K562 , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Coelhos , Staphylococcus aureus/metabolismo
17.
Retrovirology ; 8: 21, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21429186

RESUMO

BACKGROUND: Viral genomes of the human endogenous retrovirus K (HERV-K) family are integrated into the human chromosome and are transmitted vertically as Mendelian genes. Although viral particles are released by some transformed cells, they have never been shown to be infectious. In general, gammaretroviruses are produced as immature viral particles by accumulation of the Gag polyproteins at the plasma membrane, which subsequently bud from the cell surface. After release from the cell, Gag is further processed by proteolytic cleavage by the viral protease (PR), which results in morphologically mature particles with condensed cores. The HERV-K Gag polyprotein processing and function has not yet been precisely determined. RESULTS: We generated a recombinant poxvirus, encoding the human endogenous retrovirus K consensus gag-pro-pol genes (MVA-HERV-Kcon) and obtained high levels of HERV-K Gag expression. The resulting retroviral particle assembled at the plasma membrane, as is typical for gammaretroviruses; and immature as well as mature retrovirus-like particles (VLPs) were observed around the infected cells. VLPs were purified, concentrated and separated by two-dimensional gel electrophoresis. The HERV-K Gag fragments were identified by mass spectroscopy and N-terminal sequencing which revealed that HERV-K Gag is processed into MA, a short spacer peptide, p15, CA and NC. CONCLUSION: The cleavage sites of HERV-K Gag were mapped and found to be highly conserved among HERV-K genomes. The consensus HERV-K gag gene used in this study is known to support viral, infectivity 1, and thus the cleavage sites that were mapped in this study for all the Gag components are relevant for HERV-K infectivity.


Assuntos
Retrovirus Endógenos/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Retrovirus Endógenos/genética , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Produtos do Gene gag/genética , Genes gag , Genoma Viral , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Recombinação Genética , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Montagem de Vírus
18.
PLoS One ; 3(10): e3313, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18836553

RESUMO

BACKGROUND: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and infection studies we show in contrast to published data that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched microdomains (TEMs) in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and infection, confirming the importance of TEMs for infectious endocytosis of HPV16. CONCLUSIONS/SIGNIFICANCE: Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens, including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, their involvement in endocytosis of viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for viral pathogens and especially HPV16.


Assuntos
Papillomavirus Humano 16/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Antígenos CD/metabolismo , Antígenos CD/ultraestrutura , Cavéolas/metabolismo , Cavéolas/virologia , Linhagem Celular , Clatrina/genética , Clatrina/metabolismo , Endocitose , Feminino , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 16/ultraestrutura , Humanos , Rim/citologia , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/ultraestrutura , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/ultraestrutura , Tetraspanina 24 , Tetraspanina 30 , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
19.
J Gen Virol ; 89(Pt 2): 567-572, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18198388

RESUMO

Of all human endogenous retroviruses known today, HERV-K is the only one that has been shown to produce viral particles. While the first of the approximately 30 HERV-K sequences integrated into the human genome more than 40 million years ago, evidence is accumulating that HERV-K was active more recently, provirus HERV-K113 being the youngest sequence found. However, it is unclear which HERV-K sequences code for the viral particles that are produced by human germ-cell tumours or melanomas. Here, we show that the provirus HERV-K113, cloned into a baculovirus expression vector, is capable of producing intact particles of retroviral morphology, exhibiting the typical structure of those particles that were characterized in cell lines derived from human germ-cell tumours. Thus, the HERV-K113 sequence is a candidate for particle production in vivo and for an active human endogenous retrovirus of today.


Assuntos
Retrovirus Endógenos/fisiologia , Provírus/genética , Spodoptera/metabolismo , Replicação Viral/fisiologia , Animais , Baculoviridae/genética , Células Cultivadas/ultraestrutura , DNA Viral/análise , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Vetores Genéticos , Genoma Humano , Humanos , Provírus/classificação , Provírus/patogenicidade , Provírus/fisiologia , Vírion/genética
20.
J Virol ; 79(7): 4033-42, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15767405

RESUMO

Passive immunization with antibodies directed against the cellular form of the prion protein (PrPC) can protect against prion disease. However, active immunization with recombinant prion protein has so far failed to induce antibodies directed against native PrPC expressed on the cell surface. To develop an antiprion vaccine, a retroviral display system presenting either the full-length mouse PrP (PrP209) or the C-terminal 111 amino acids (PrP111) fused to the transmembrane domain of the platelet-derived growth factor receptor was established. Western blot analysis and immunogold electron microscopy of the retroviral display particles revealed successful incorporation of the fusion proteins into the particle membrane. Interestingly, retroviral particles displaying PrP111 (PrPD111 retroparticles) showed higher incorporation efficiencies than those displaying PrP209. Already 7 days after intravenous injection of PrPD111 retroparticles, PrPC-deficient mice (Prnp(o/o)) showed high immunoglobulin M (IgM) and IgG titers specifically binding the native PrPC molecule as expressed on the surface of T cells isolated from PrPC-overexpressing transgenic mice. More importantly, heterozygous Prnp(+/o) mice and also wild-type mice showed PrPC-specific IgM and IgG antibodies upon vaccination with PrPD111 retroparticles, albeit at considerably lower levels. Bacterially expressed recombinant PrP, in contrast, was unable to evoke IgG antibodies recognizing native PrPC in wild-type mice. Thus, our data show that PrP or parts thereof can be functionally displayed on retroviral particles and that immunization with PrP retroparticles may serve as a novel promising strategy for vaccination against transmissible spongiform encephalitis.


Assuntos
Anticorpos/sangue , Tolerância Imunológica , Proteínas PrPC/imunologia , Príons/imunologia , Retroviridae/genética , Adjuvantes Imunológicos , Animais , Anticorpos/imunologia , Reações Antígeno-Anticorpo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Doenças Priônicas/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Retroviridae/metabolismo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA