Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(12): 1746-1753, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116405

RESUMO

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.

2.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37996079

RESUMO

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Biblioteca Gênica , Ligantes , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química
3.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37770003

RESUMO

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Assuntos
Ácido Flufenâmico , Neoplasias , Humanos , Ácido Flufenâmico/farmacologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Hippo , Neoplasias/genética
4.
Protein Sci ; 31(9): e4395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040262

RESUMO

SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Metiltransferases/química , RNA Viral/metabolismo , Proteínas não Estruturais Virais/química
5.
ACS Infect Dis ; 8(8): 1533-1542, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822715

RESUMO

SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC50 values ranging from 6 ± 0.5 to 50 ± 6 µM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.


Assuntos
Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/química , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases , COVID-19/virologia , DNA de Cadeia Simples , Humanos , Metiltransferases/antagonistas & inibidores , Ácidos Nucleicos/metabolismo , RNA Helicases/antagonistas & inibidores , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/antagonistas & inibidores
6.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
7.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192965

RESUMO

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Assuntos
COVID-19/genética , Exorribonucleases/genética , Ligação Proteica/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Sítios de Ligação/genética , COVID-19/virologia , Humanos , Metilação , Pandemias , RNA Viral/genética , SARS-CoV-2/patogenicidade , Replicação Viral/genética
8.
SLAS Discov ; 26(6): 757-765, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33874769

RESUMO

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Assuntos
Adenosina/análogos & derivados , Ensaios de Triagem em Larga Escala , Capuzes de RNA/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Adenosina/química , Adenosina/farmacologia , COVID-19/virologia , Clonagem Molecular , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Metilação , Metiltransferases , Modelos Moleculares , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Trítio , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
9.
bioRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619486

RESUMO

The COVID-19 pandemic has clearly brought the healthcare systems world-wide to a breaking point along with devastating socioeconomic consequences. The SARS-CoV-2 virus which causes the disease uses RNA capping to evade the human immune system. Non-structural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small molecule inhibitors of nsp14 methyltransferase (MT) activity, we developed and employed a radiometric MT assay to screen a library of 161 in house synthesized S-adenosylmethionine (SAM) competitive methyltransferase inhibitors and SAM analogs. Among seven identified screening hits, SS148 inhibited nsp14 MT activity with an IC 50 value of 70 ± 6 nM and was selective against 20 human protein lysine methyltransferases indicating significant differences in SAM binding sites. Interestingly, DS0464 with IC 50 value of 1.1 ± 0.2 µM showed a bi-substrate competitive inhibitor mechanism of action. Modeling the binding of this compound to nsp14 suggests that the terminal phenyl group extends into the RNA binding site. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein methyltransferases. The structure-activity relationship provided by these compounds should guide the optimization of selective bi-substrate nsp14 inhibitors and may provide a path towards a novel class of antivirals against COVID-19, and possibly other coronaviruses.

10.
SLAS Discov ; 26(5): 620-627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33423577

RESUMO

SARS-CoV-2, the coronavirus that causes COVID-19, evades the human immune system by capping its RNA. This process protects the viral RNA and is essential for its replication. Multiple viral proteins are involved in this RNA capping process, including the nonstructural protein 16 (nsp16), which is an S-adenosyl-l-methionine (SAM)-dependent 2'-O-methyltransferase. Nsp16 is significantly active when in complex with another nonstructural protein, nsp10, which plays a key role in its stability and activity. Here we report the development of a fluorescence polarization (FP)-based RNA displacement assay for nsp10-nsp16 complex in a 384-well format with a Z' factor of 0.6, suitable for high-throughput screening. In this process, we purified the nsp10-nsp16 complex to higher than 95% purity and confirmed its binding to the methyl donor SAM, the product of the reaction, S-adenosyl-l-homocysteine (SAH), and a common methyltransferase inhibitor, sinefungin, using isothermal titration calorimetry (ITC). The assay was further validated by screening a library of 1124 drug-like compounds. This assay provides a cost-effective high-throughput method for screening the nsp10-nsp16 complex for RNA competitive inhibitors toward developing COVID-19 therapeutics.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/farmacologia , Ligação Competitiva , COVID-19/virologia , Inibidores Enzimáticos/farmacologia , Polarização de Fluorescência , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases , Ligação Proteica , Capuzes de RNA/antagonistas & inibidores , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Tratamento Farmacológico da COVID-19
11.
Methods ; 175: 30-43, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809836

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Histonas/química , Humanos , Cinética , Neoplasias/tratamento farmacológico , Filogenia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Fatores de Processamento de RNA/química , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA