Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2605, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297028

RESUMO

Patients with drug-resistant essential tremor (ET) may undergo Gamma Knife stereotactic radiosurgical thalamotomy (SRS-T), where the ventro-intermediate nucleus of the thalamus (Vim) is lesioned by focused beams of gamma radiations to induce clinical improvement. Here, we studied SRS-T impacts on left Vim dynamic functional connectivity (dFC, n = 23 ET patients scanned before and 1 year after intervention), and on surface-based morphometric brain features (n = 34 patients, including those from dFC analysis). In matched healthy controls (HCs), three dFC states were extracted from resting-state functional MRI data. In ET patients, state 1 spatial stability increased upon SRS-T (F1,22 = 19.13, p = 0.004). More frequent expression of state 3 over state 1 before SRS-T correlated with greater clinical recovery in a way that depended on the MR signature volume (t6 = 4.6, p = 0.004). Lower pre-intervention spatial variability in state 3 expression also did (t6 = - 4.24, p = 0.005) and interacted with the presence of familial ET so that these patients improved less (t6 = 4.14, p = 0.006). ET morphometric profiles showed significantly lower similarity to HCs in 13 regions upon SRS-T (z ≤ - 3.66, p ≤ 0.022), and a joint analysis revealed that before thalamotomy, morphometric similarity and states 2/3 mean spatial similarity to HCs were anticorrelated, a relationship that disappeared upon SRS-T (z ≥ 4.39, p < 0.001). Our results show that left Vim functional dynamics directly relates to upper limb tremor lowering upon intervention, while morphometry instead has a supporting role in reshaping such dynamics.


Assuntos
Tremor Essencial , Radiocirurgia , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Radiocirurgia/métodos , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Encéfalo
2.
J Neurosurg ; 132(6): 1792-1801, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31075777

RESUMO

OBJECTIVE: The tremor circuitry has commonly been hypothesized to be driven by one or multiple pacemakers within the cerebello-thalamo-cortical pathway, including the cerebellum, contralateral motor thalamus, and primary motor cortex. However, previous studies, using multiple methodologies, have advocated that tremor could be influenced by changes within the right extrastriate cortex, at both the structural and functional level. The purpose of this work was to evaluate the role of the extrastriate cortex in tremor generation and further arrest after left unilateral stereotactic radiosurgery thalamotomy (SRS-T). METHODS: The authors considered 12 healthy controls (HCs, group 1); 15 patients with essential tremor (ET, right-sided, drug-resistant; group 2) before left unilateral SRS-T; and the same 15 patients (group 3) 1 year after the intervention, to account for delayed effects. Blood oxygenation level-dependent functional MRI during resting state was used to characterize the dynamic interactions of the right extrastriate cortex, comparing HC subjects against patients with ET before and 1 year after SRS-T. In particular, the authors applied coactivation pattern analysis to extract recurring whole-brain spatial patterns of brain activity over time. RESULTS: The authors found 3 different sets of coactivating regions within the right extrastriate cortex in HCs and patients with pretherapeutic ET, reminiscent of the "cerebello-visuo-motor," "thalamo-visuo-motor" (including the targeted thalamus), and "basal ganglia and extrastriate" networks. The occurrence of the first pattern was decreased in pretherapeutic ET compared to HCs, whereas the other two patterns showed increased occurrences. This suggests a misbalance between the more prominent cerebellar circuitry and the thalamo-visuo-motor and basal ganglia networks. Multiple regression analysis showed that pretherapeutic standard tremor scores negatively correlated with the increased occurrence of the thalamo-visuo-motor network, suggesting a compensatory pathophysiological trait. Clinical improvement after SRS-T was related to changes in occurrences of the basal ganglia and extrastriate cortex circuitry, which returned to HC values after the intervention, suggesting that the dynamics of the extrastriate cortex had a role in tremor generation and further arrest after the intervention. CONCLUSIONS: The data in this study point to a broader implication of the visual system in tremor generation, and not only through visual feedback, given its connections to the dorsal visual stream pathway and the cerebello-thalamo-cortical circuitry, with which its dynamic balance seems to be a crucial feature for reduced tremor. Furthermore, SRS-T seems to bring abnormal pretherapeutic connectivity of the extrastriate cortex to levels comparable to those of HC subjects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA