Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 78(5): 914-925, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804402

RESUMO

BACKGROUND & AIMS: Pioglitazone (Pio) is efficacious in NASH, but its utility is limited by PPARγ-driven side effects. Pio is a mixture of two enantiomers (R, S). PXL065, deuterium-stabilized R-Pio, lacks PPARγ activity but retains non-genomic activity. We tested the hypothesis that PXL065 would have similar efficacy but a better safety profile than Pio in patients with NASH. METHODS: Patients (≥8% liver fat, NAFLD activity score [NAS] ≥4, F1-F3) received daily doses of PXL065 (7.5, 15, 22.5 mg) or placebo 1:1:1:1 for 36 weeks. The primary endpoint was relative % change in liver fat content (LFC) on MRI-proton density fat fraction; liver histology, non-invasive tests, safety-tolerability, and pharmacokinetics were also assessed. RESULTS: One hundred and seventeen patients were evaluated. All PXL065 groups met the primary endpoint (-21 to -25% LFC, p = 0.008-0.02 vs. placebo); 40% (22.5 mg) achieved a ≥30% LFC reduction. Favorable trends in non-invasive tests including reductions in PIIINP (p = 0.02, 22.5 mg) and NAFLD fibrosis score (p = 0.04, 22.5 mg) were observed. On histology (n = 92), a ≥1 stage fibrosis improvement occurred in 40% (7.5 mg), 50% (15 mg, p = 0.06), and 35% (22.5 mg) vs. 17% for placebo; up to 50% of PXL065-treated patients achieved a ≥2 point NAS improvement without fibrosis worsening vs. 30% with placebo. Metabolic improvements included: HbA1c (-0.41% p = 0.003) and insulin sensitivity (HOMA-IR, p = 0.04; Adipo-IR, p = 0.002). Adiponectin increased (+114%, 22.5 mg, p <0.0001) vs. placebo. There was no dose-dependent effect on body weight or PXL065-related peripheral oedema signal. Overall, PXL065 was safe and well tolerated. Pharmacokinetics confirmed dose-proportional and higher steady state R- vs. S-Pio exposure. IMPACT AND IMPLICATIONS: Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease. CONCLUSIONS: PXL065 is a novel molecule which retains an efficacy profile in NASH similar to Pio with reduced potential for PPARγ-driven side effects. A pivotal clinical trial is warranted to confirm the histological benefits reported herein. IMPACT AND IMPLICATIONS: Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Pioglitazona/uso terapêutico , Deutério/metabolismo , Deutério/uso terapêutico , PPAR gama , Fígado/patologia , Fibrose , Diabetes Mellitus/metabolismo , Método Duplo-Cego
2.
J Pharmacol Exp Ther ; 382(2): 208-222, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764327

RESUMO

X-linked adrenoleukodystrophy (ALD) is a severe orphan disease caused by mutations in the peroxisomal ABCD1 transporter gene, leading to toxic accumulation of Very Long-Chain Fatty Acids (VLCFA - in particular C26:0) resulting in inflammation, mitochondrial dysfunction and demyelination. AMP-activated protein kinase (AMPK) is downregulated in ALD, and its activation is implicated as a therapeutic target. PXL770 is the first direct allosteric AMPK activator with established clinical efficacy and tolerability. Methods: We investigated its effects in ALD patient-derived fibroblasts/lymphocytes and Abcd1 KO mouse glial cells. Readouts included VLCFA levels, mitochondrial function and mRNA levels of proinflammatory genes and compensatory transporters (ABCD2-3). After PXL770 treatment in Abcd1 KO mice, we assessed VLCFA levels in tissues, sciatic nerve axonal morphology by electronic microscopy and locomotor function by open-field/balance-beam tests. Results: In patients' cells and Abcd1 KO glial cells, PXL770 substantially decreased C26:0 levels (by ∼90%), improved mitochondrial respiration, reduced expression of multiple inflammatory genes and induced expression of ABCD2-3 In Abcd1 KO mice, PXL770 treatment normalized VLCFA in plasma and significantly reduced elevated levels in brain (-25%) and spinal cord (-32%) versus untreated (P < 0.001). Abnormal sciatic nerve axonal morphology was also improved along with amelioration of locomotor function. Conclusion: Direct AMPK activation exerts beneficial effects on several hallmarks of pathology in multiple ALD models in vitro and in vivo, supporting clinical development of PXL770 for this disease. Further studies would be needed to overcome limitations including small sample size for some parameters, lack of additional in vivo biomarkers and incomplete pharmacokinetic characterization. SIGNIFICANCE STATEMENT: Adrenoleukodystrophy is a rare and debilitating condition with no approved therapies, caused by accumulation of very long-chain fatty acids. AMPK is downregulated in the disease and has been implicated as a potential therapeutic target. PXL770 is a novel clinical stage direct AMPK activator. In these studies, we used PXL770 to achieve preclinical validation of direct AMPK activation for this disease - based on correction of key biochemical and functional readouts in vitro and in vivo, thus supporting clinical development.


Assuntos
Adrenoleucodistrofia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Monofosfato de Adenosina , Adenilato Quinase/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos
3.
Physiol Rep ; 10(5): e15151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274817

RESUMO

The global prevalence of type 2 diabetes (T2D) is expected to exceed 642 million people by 2040. Metformin is a widely used biguanide T2D therapy, associated with rare but serious events of lactic acidosis, in particular with predisposing conditions (e.g., renal failure or major surgery). Imeglimin, a recently approved drug, is the first in a new class (novel mode of action) of T2D medicines. Although not a biguanide, Imeglimin shares a chemical moiety with Metformin and also modulates mitochondrial complex I activity, a potential mechanism for Metformin-mediated lactate accumulation. We interrogated the potential for Imeglimin to induce lacticacidosis in relevant animal models and further assessed differences in key mechanisms known for Metformin's effects. In a dog model of major surgery, Metformin or Imeglimin (30-1000 mg/kg) was acutely administered, only Metformin-induced lactate accumulation and pH decrease leading to lactic acidosis with fatality at the highest dose. Rats with gentamycin-induced renal insufficiency received Metformin or Imeglimin (50-100 mg/kg/h), only Metformin increased lactatemia and H+ concentrations with mortality at higher doses. Plasma levels of Metformin and Imeglimin were similar in both models. Mice were chronically treated with Metformin or Imeglimin 200 mg/kg bid. Only Metformin produced hyperlactatemia after acute intraperitoneal glucose loading. Ex vivo measurements revealed higher mitochondrial complex I inhibition with Metformin versus slight effects with Imeglimin. Another mechanism implicated in Metformin's effects on lactate production was assessed: in isolated rat, liver mitochondria exposed to Imeglimin or Metformin, only Metformin (50-250 µM) inhibited the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). In liver samples from chronically treated mice, measured mGPDH activity was lower with Metformin versus Imeglimin. These data indicate that the risk of lactic acidosis with Imeglimin treatment may be lower than with Metformin and confirm that the underlying mechanisms of action are distinct, supporting its potential utility for patients with predisposing conditions.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Insuficiência Renal , Acidose Láctica/induzido quimicamente , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Ácido Láctico , Metformina/efeitos adversos , Metformina/uso terapêutico , Camundongos , Ratos , Triazinas
4.
Hepatol Commun ; 6(1): 101-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494384

RESUMO

No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet-fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fibrose/fisiopatologia , Hepatócitos/metabolismo , Humanos , Inflamação/fisiopatologia , Insulina/sangue , Lipogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia
5.
Clin Transl Sci ; 15(4): 1014-1026, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962074

RESUMO

Imeglimin is an orally administered first-in-class drug to treat type 2 diabetes mellitus (T2DM) and is mainly excreted unchanged by the kidneys. The present study aimed to define the pharmacokinetic (PK) characteristics of imeglimin using population PK analysis and to determine the optimal dosing regimen for Japanese patients with T2DM and chronic kidney disease (CKD). Imeglimin plasma concentrations in Japanese and Western healthy volunteers, and patients with T2DM, including patients with mild to severe CKD with an estimated glomerular filtration rate (eGFR) greater than 14 ml/min/1.73 m2 were included in a population PK analysis. PK simulations were conducted using a population PK model, and the area under concentration-time curve (AUC) was extrapolated with power regression analysis to lower eGFR. The influence of eGFR, weight, and age on apparent clearance and of dose on relative bioavailability were quantified by population PK analysis. Simulations and extrapolation revealed that the recommended dosing regimen based on the AUC was 500 mg twice daily (b.i.d.) for patients with eGFR 15-45 ml/min/1.73 m2 , and 500 mg with a longer dosing interval was suggested for those with eGFR less than 15. Simulations revealed that differences in plasma AUCs between Japanese and Western patients at the same dose were mainly driven by a difference in the eGFR and that the plasma AUC after 1000 and 1500 mg b.i.d. in Japanese and Western patients, respectively, was comparable in the phase IIb studies. These results indicate suitable dosages of imeglimin in the clinical setting of T2DM with renal impairment.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Japão , Masculino , Insuficiência Renal Crônica/tratamento farmacológico , Triazinas/uso terapêutico
6.
Hepatol Commun ; 5(8): 1412-1425, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430785

RESUMO

The antidiabetic drug pioglitazone is, to date, the most efficacious oral drug recommended off-label for the treatment of nondiabetic or diabetic patients with biopsy-proven nonalcoholic steatohepatitis (NASH). However, weight gain and edema side effects have limited its use for NASH. Pioglitazone is a mixture of two stereoisomers ((R)-pioglitazone and (S)-pioglitazone) that interconvert in vitro and in vivo. We aimed to characterize their individual pharmacology to develop a safer and potentially more potent drug for NASH. We stabilized the stereoisomers of pioglitazone with deuterium at the chiral center. Preclinical studies with deuterium-stabilized (R)-pioglitazone (PXL065) and (S)-pioglitazone demonstrated that (R)-pioglitazone retains the efficacy of pioglitazone in NASH, including reduced hepatic triglycerides, free fatty acids, cholesterol, steatosis, inflammation, hepatocyte enlargement, and fibrosis. Although both stereoisomers inhibit the mitochondrial pyruvate carrier, PXL065 shows limited to no peroxisome proliferator-activated receptor gamma (PPARγ) activity, whereas (S)-pioglitazone appears responsible for the PPARγ activity and associated weight gain. Nonetheless, in preclinical models, both stereoisomers reduce plasma glucose and hepatic fibrosis to the same extent as pioglitazone, suggesting that these benefits may also be mediated by altered mitochondrial metabolism. In a phase 1a clinical study, we demonstrated safety and tolerability of single 7.5-mg, 22.5-mg, and 30-mg doses of PXL065 as well as preferential exposure to the (R)-stereoisomer in comparison to 45-mg pioglitazone. Conclusion: PXL065 at a dose lower than 22.5 mg is predicted to exhibit efficacy for NASH equal to, or greater than, 45-mg pioglitazone without the potentially detrimental weight gain and edema. The development of PXL065 for NASH represents a unique opportunity to leverage the therapeutic benefits of pioglitazone, while reducing or eliminating PPARγ-related side effects.

7.
PLoS One ; 16(2): e0241651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606677

RESUMO

Pancreatic islet ß-cell dysfunction is characterized by defective glucose-stimulated insulin secretion (GSIS) and is a predominant component of the pathophysiology of diabetes. Imeglimin, a novel first-in-class small molecule tetrahydrotriazine drug candidate, improves glycemia and GSIS in preclinical models and clinical trials in patients with Type 2 diabetes; however, the mechanism by which it restores ß-cell function is unknown. Here, we show that imeglimin acutely and directly amplifies GSIS in islets isolated from rodents with Type 2 diabetes via a mode of action that is distinct from other known therapeutic approaches. The underlying mechanism involves increases in the cellular nicotinamide adenine dinucleotide (NAD+) pool-potentially via the salvage pathway and induction of nicotinamide phosphoribosyltransferase (NAMPT) along with augmentation of glucose-induced ATP levels. Further, additional results suggest that NAD+ conversion to a second messenger, cyclic ADP ribose (cADPR), via ADP ribosyl cyclase/cADPR hydrolase (CD38) is required for imeglimin's effects in islets, thus representing a potential link between increased NAD+ and enhanced glucose-induced Ca2+ mobilization which-in turn-is known to drive insulin granule exocytosis. Collectively, these findings implicate a novel mode of action for imeglimin that explains its ability to effectively restore-ß-cell function and provides for a new approach to treat patients suffering from Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Triazinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Citocinas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Modelos Biológicos , NAD/metabolismo , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/metabolismo , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Compostos de Sulfonilureia/farmacologia
8.
Mol Pharm ; 8(3): 651-63, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21438632

RESUMO

Brain penetration is characterized by its extent and rate and is influenced by drug physicochemical properties, plasma exposure, plasma and brain protein binding and BBB permeability. This raises questions related to physiology, interspecies differences and in vitro/in vivo extrapolation. We herein discuss the use of in vitro human and animal BBB model as a tool to improve CNS compound selection. These cell-based BBB models are characterized by low paracellular permeation, well-developed tight junctions and functional efflux transporters. A study of twenty drugs shows similar compound ranking between rat and human models although with a 2-fold higher permeability in rat. cLogP < 5, PSA < 120 Å, MW < 450 were confirmed as essential for CNS drugs. An in vitro/in vivo correlation in rat (R² = 0.67; P = 2 × 10⁻4) was highlighted when in vitro permeability and efflux were considered together with plasma exposure and free fraction. The cell-based BBB model is suitable to optimize CNS-drug selection, to study interspecies differences and then to support human brain exposure prediction.


Assuntos
Barreira Hematoencefálica/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Células Cultivadas , Descoberta de Drogas/métodos , Humanos , Masculino , Modelos Biológicos , Ratos , Junções Íntimas/metabolismo
9.
Fundam Clin Pharmacol ; 21(6): 659-63, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18034668

RESUMO

Expression of drug transporters corresponds to a crucial parameter in intestinal Caco-2 cells widely used for investigating drug absorption. In order to characterize it in an accurate, reproducible and comparative manner, we analyzed mRNA levels of 19 influx and efflux drug transporters through real-time quantitative polymerase chain reaction assays combined with the use of a total RNA reference standard. Profiles of transporter expression were found to be significantly correlated in two independent Caco-2 cell clones and in human small intestine, which may support the use of Caco-2 cells for investigating intestinal drug transport. Several transporters were nevertheless quantitatively expressed at higher (MRP2, MRP3, MRP4, MRP5, MRP6, OATP-A, OATP-B, OCT1 and MCT1) or lower (BCRP) levels in Caco-2 cells comparatively to small intestine. Moreover, MDR1, MRP2, OATP-A and PEPT1 mRNA relative expression were found to differ in the two analyzed Caco-2 cell clones by at least a twofold factor, highlighting that some variations in transporter expression may occur in Caco-2 cells depending on cell origin, and therefore underlining the interest of carefully characterizing transporter levels in any Caco-2 cell clone before its use for drug transport assays.


Assuntos
Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Células CACO-2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/genética , RNA Mensageiro/análise , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA